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Concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybromi-
nated diphenyl ethers (PBDEs) were measured in 32 species inhabiting the Yellow Sea to assess their bio-
accumulation potentials. The concentrations in these samples were lower than those reported for other
countries or locations. Relatively high levels of BDE 209 in biota suggest an ongoing source of deca-BDE
technical mixing within the Yellow Sea. The accumulation profiles of PCBs were uniform between species,
but the concentrations of OCPs and PBDEs varied widely. Pelagic and benthic food-chain components
were separated by their d13C values. Significant positive correlations between d15N and PCB 153, PCB
138, p,p0-DDE, oxy-chlordane, and trans-nonachlordane were found only for pelagic consumers, indicating
that the pelagic food chain is an important bioaccumulation pathway for selected PCB and OCP com-
pounds. The other compounds did not show any biomagnification through benthic and pelagic food
chains, suggesting the lower bioaccumulation potentials of these contaminants.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Polychlorinated biphenyls (PCBs), organochlorine pesticides
(OCPs), and polybrominated diphenyl ethers (PBDEs) are represen-
tative persistent organic pollutants (POPs). Their characteristics
within the environment include persistence, bioaccumulation,
long-range transport, toxicity, and biomagnification through food
webs. Long-term exposure to PCBs, OCPs, and PBDEs elicits adverse
health effects such as developmental defects, cancer, and endo-
crine disruption to both wildlife and humans (Kelce et al., 1995;
Birnbaum and Stask, 2004; Lee et al., 2006; Ha et al., 2007).
Although PCBs and OCPs have not been produced since the ban
or restricted use under the Stockholm Convention in 2001, high
levels of these contaminants remain in coastal environments
(Sudaryanto et al., 2008; Moon et al., 2008, 2009; Won et al.,
2009). The total historical consumption of OCPs, PCBs, and PBDEs
in South Korea was 31,000, 9000, and 12,408 tons, respectively,
in 2002 (Kim et al., 2007). The consumption of PCBs in China was
reported to be around 20,000 tons in the late 1990s (Zang and
Chongyano, 2000). In addition, 4.9 million tons of hexachlorocyclo-
hexane compounds (HCHs) and 0.4 million tons of dichloro-diphe-
nyl-trichloto-ethane and its metabolites (DDTs) were known to be
produced (Zhang et al., 2002). The production of brominated flame
retardants (BFRs) in China was approximately 10,000 tons in 2000,
those of decabrominated diphenyl ether (deca-BDE) was
15,000 tons/yr in 2006 (Zhang et al., 2009). PBDEs are used widely
as BFRs in many products such as consumer electrical goods and
textiles (Watanabe and Sakai, 2003). Because of the environmental
and health concerns, penta- and octa-BDE commercial mixtures
have been banned in Europe and the USA since 2004. Deca-BDE
technical mixtures are also banned in some European countries
and in some US states (Crosse et al., 2012). A few studies on PBDEs
are available from coastal and marine environments in Korea
(Moon et al., 2007, 2010, 2012).

Stable isotopes provide a powerful tool for ecotoxicological
studies. The nitrogen stable isotope ratio (d15N) is used as an indi-
cator of the trophic position of an animal because the d15N value
increases by about 3.4‰ per trophic level as the trophic level in-
creases in aquatic food chains (Minagawa and Wada, 1984; Mich-
ener and Schell, 1994; Hobson et al., 1995). The stable carbon
isotope ratio (d13C) of an animal also reflects that of its dietary
source with predictable trophic enrichment (<1‰). Therefore,
d13C can be used to identify the sources of carbon in marine ecosys-
tems and to elucidate the prevalence of inshore versus offshore
and/or pelagic versus benthic food sources (Hobson and Welch,
1992; Lawson and Hobson, 2000).

The Yellow Sea, which is surrounded by the Korean peninsula
and China, is a shallow (<70 m in water depth) and semi-enclosed
shelf. Extensive international shipping, aquaculture, and fishing
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activities are concentrated in the Yellow Sea. The industry and
economy of both countries have developed rapidly over the past
few decades, and thus these countries have high potential for
POP contamination through riverine discharges and atmospheric
transport (Lammel et al., 2007; Wang et al., 2010). Several studies
have reported the contamination of sediments by POPs in the Yel-
low Sea (Ma et al., 2001; Yang et al., 2005; Zhang et al., 2007; Liu
et al., 2008). However, measurements of the content of POPs in
marine organisms such as fish and shellfish are very limited in this
region (Oh et al., 2005; Kannan et al., 2010). The objectives of this
study were to investigate the accumulation status of PCBs, OCPs,
and PBDEs in the Yellow Sea and to use stable isotope ratios
(d13C and d15N) to assess the bioaccumulation potentials of these
contaminants in the food web, comprising of zooplankton to ceta-
ceans from the Yellow Sea.
2. Materials and methods

2.1. Study area

The Yellow Sea is a semi-closed continental shelf with an aver-
age depth of 44 m and surface area extent of 38 � 104 km2 (Fig. 1).
The rivers that discharge large amounts of fresh water containing
suspended particles into the Yellow Sea include the Changjiang,
Daliaohe, Yellow, Yalujiang, and Haihe Rivers of China, and the
Han, Kum, and Yeongsan rivers of Korea (Qin et al., 1989). Various
kinds of contaminants accumulated through atmospheric deposi-
tion associated with long-range transport have been reported in
this region (Gao et al., 1992; Liu et al., 1998; Yeo et al., 2004).
The Yellow Sea is one of the major feeding and breeding grounds
of fish in northeast Asian seas. Fishery in the Yellow Sea is very
intensive, with a total catch of fish reaching one million tons per
year (Liu and Chen, 1998). The abundance of fish species in the Yel-
low Sea is low compared with other temperate waters of the same
latitude. The major species for fisheries are anchovy, croaker, flat-
fish, herring, mackerel, and hairtail. Chinese shrimp, mantis
Fig. 1. Map showing the study area in the central region of the Yellow Sea. CCC, C
shrimp, white-hair rough shrimp, and swimming crab are abun-
dant invertebrates.
2.2. Sample collection and treatment

A total of 32 marine species were collected in the central part of
the Yellow Sea in July 2007 (Fig. 1). Zooplankton was collected
with a twin bongo net (0.6 m diameter openings, 250 lm mesh
size). The net was hauled obliquely from approximately 40 m
depth to the surface. The other invertebrates and fish were col-
lected using a bottom trawl (length 41 m, width 18.8 m, 38 mm
mesh, and 10 mm cod end mesh net). Organisms collected were
cleaned of epibionts and identified on board. Each taxon was
placed into a separate polyethylene bag, stored on ice, and trans-
ported to the land-based laboratory. All collected samples were
kept frozen at �35 �C in the laboratory until subsequent treatment.
After removal of the skin of the fish and cephalopods, the muscle
tissues were homogenized using an ultra-disperser. The shells of
bivalves, gastropods, and crustaceans were removed, and the
whole soft tissues were pooled and homogenized for analysis.
Muscle tissues from by-caught minke whales from the Yellow
Sea in 2007 were also obtained from the Cetacean Research Insti-
tute, Korea. For stable isotope analysis, muscle tissues of all speci-
mens were taken individually. The remaining muscle tissues of the
same species were pooled and homogenized, then freeze-dried and
ground to powder using a mortar and pestle for later analyses.
Powdered tissue samples for d13C analysis were defatted using a
mixture of methanol, chloroform, and water (2:1:0.8 by volume)
according to the method of Bligh and Dyer (1959). This step avoids
disrupting d13C values because of between-species differences in
the concentration of isotopically lighter lipids (Focken and Becker,
1998). Zooplankton samples for d13C analysis were treated with
10% HCl to remove bicarbonate before defatting. The defatting
procedure was not necessary for samples for d15N analysis. Animal
tissue samples for isotope analysis to be processed were dried in an
hina Coastal Current; YSWC, Yellow Sea Warm Current; LC, Littoral Current.
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oven at 60 �C and kept frozen (�70 �C) in the laboratory until sub-
sequent treatment.

2.3. Sample preparation

The concentrations of 21 PCB congeners (PCBs 18, 28, 29, 44, 52,
87, 101, 105, 110, 118, 128, 138, 153, 170, 180, 187, 194, 195, 200,
205, and 206), 24 PBDE congeners (BDEs 17, 28, 47, 49, 66, 71, 77,
85, 99, 100, 119, 126, 138, 153, 154, 156, 183, 184, 191, 196, 197,
206, 207, and 209), and 15 OCP compounds were measured in all
marine organism samples. DDTs included p,p0-DDE, o,p0-DDE, p,p0-
DDE, o,p0-DDE, p,p0-DDT, and o,p0-DDT; chlordanes (CHLs) included
oxy-CHL, trans-CHL, cis-CHL, trans-nonaCHL, and cis-nonaCHL; and
HCHs included a-, b-, and c-HCH. Hexachlorobenzene (HCB) was
also analyzed.

The details of the experimental procedures to analyze PCBs,
OCPs, and PBDEs in marine organisms have been reported else-
where (Moon et al., 2007, 2009). In brief, about 20 g of each sample
was homogenized with anhydrous Na2SO4 and extracted using a
Soxhlet extractor for 17 h with a 3:1 mixture of dichloromethane
(ultra-residue analysis, J.T. Baker, Phillipsburg, NJ, USA) and hexane
(ultra-residue analysis, J.T. Baker). Before the extraction, surrogates
of PCBs 103, 198, and 209 were spiked into the samples. The ex-
tract was concentrated to 11 mL using a rotary evaporator. An ali-
quot of extracted samples was subsampled for gravimetric
measurement of lipid content. Each 5 ng of the internal standards
13C12-labeled PBDE congeners (MBDE-MXE; Wellington Laborato-
ries, Guelph, ON, Canada), 13C12-labeled PCB congeners (MBP-
MXE; Wellington Laboratories), and OCP congeners (EC-5349;
Cambridge Isotope Laboratories, Andover, MA, USA) were spiked
into the remaining extracts (10 mL). Lipid in the sample extract
was removed by gel permeation chromatography using a Bio-
beads S-X3 (Bio-Rad Laboratories, Hercules, CA, USA) packed glass
column (380 mm � 22 mm inner diameter) with a successive car-
tridge packed with 0.5 g of silica gel (neutral, 70�230 mesh, Merck,
Darmstadt, Germany). Each extract was cleaned up with a multi-
layer silica gel column containing 10% AgNO3 silica gel, 22%
H2SO4 silica gel, 44% H2SO4 silica gel, and 2% KOH silica gel (GL Sci-
ences, Tokyo, Japan). The eluents were concentrated to approxi-
mately 1 mL and evaporated at room temperature to 50–100 lL.
Five nanograms of 13C12-labeled PCB recovery standard (EC 9605;
Wellington Laboratories) was added before instrumental analysis.
The residues were transferred to 50 lL of n-nonane (pesticide anal-
ysis grade, Fluka, St. Gallen, Switzerland) for instrumental analysis.

2.4. High-resolution gas chromatograph/high-resolution mass
spectrometer (HRMS) analysis

Identification and quantification of PCBs, OCPs, and PBDEs were
performed using a high-resolution gas chromatograph interfaced
with a high-resolution mass spectrometer (HRMS; JMS800D, JEOL,
Tokyo, Japan). The details of the instrumental analyses have been
presented elsewhere (Moon et al., 2007, 2009). PCBs, OCPs, and
PBDEs were quantified using the isotope dilution method, based
on the relative response factors of individual compounds. The
HRMS was operated in electron ionization mode, and ions were
monitored by selected ion monitoring. A DB5-MS gas chromato-
graph column (30 m length, 0.25 mm inner diameter, 0.25 lm film
thickness; J&W Scientific, Palo Alto, CA, USA) was used to separate
PCBs and OCPs. PBDE congeners, ranging from tri- to hepta-BDEs
and from octa- to deca-BDEs, were quantified separately using a
DB5-MS column (15 m length, 0.25 mm inner diameter, 0.1 lm
film thickness; J&W Scientific).

Solvents injected before and after the injection of standards
showed negligible contamination or carryover. Procedural blanks
(n = 7), which were processed using the same procedure as the real
samples, did not contain quantifiable amounts of target com-
pounds except for BDE 209, which was present at �0.1 ng g�1.
The recovery of surrogates (PCBs 103, 198, and 209) spiked before
the extraction was 73 ± 8.9% (average ± SD). The calculated limits
of detection (signal-to-noise ratio = 3) were 1 ng g�1 for OCPs,
0.04�0.08 pg g�1 for PCBs, and 0.1�0.5 pg g�1 for tri- to octa-BDEs.
To quantify deca-BDE concentration, the average levels measured
in the procedural blanks were subtracted from the concentrations
detected in the samples. To assess the quality of the experimental
procedures and instrumental conditions, the standard mussel
(Mytilus edulis) reference material (SRM 2977; NIST, Gaithersburg,
MD, USA) was analyzed for PCBs, OCPs, and PBDEs. The recovery
(n = 4) ranged from 64% to 87% for PCBs, 86% to 116% for OCPs,
and 87% to 107% for PBDEs.

2.5. Stable isotope analysis and trophic magnification factors (TMFs)

Carbon and nitrogen isotope ratios were determined using a
continuous-flow isotope-ratio mass spectrometer aligned with an
elemental analyzer. Dried subsamples (0.5–1.5 mg) were weighed
in tin capsules (EuroVector, 6 � 4 mm). The samples wrapped in
tin capsules were oxidized at 1030 �C in an elemental analyzer
(EuroVector 3000 series, Milan, Italy), and the resultant CO2 and
N2 gases were analyzed for stable isotope ratios with a continu-
ous-flow isotope-ratio mass spectrometer (CF-IRMS, Micromass
IsoPrime, Manchester, UK). Stable isotope ratios are expressed as
the relative parts per thousand (‰) differences between the sam-
ples and standard reference materials (Pee Dee Belemnite for car-
bon and atmospheric N2 for nitrogen) using the following
equation:

dX ¼ ½ðRsample=RstandardÞ � 1� � 103;

where X is 13C or 15N, and R is the corresponding ratio of 13C:12C or
15N:14N. IAEA CH-6 (sucrose, d13C = �10.1 ± 0.2‰) and IAEA-N1
(ammonium sulfate, d15N = 2.8 ± 0.3‰) were used as reference
materials. Measurement precision for 20 repeated analyses was
�0.1‰ and 0.2‰ for d13C and d15N, respectively.

The trophic level (TL) of consumer species was calculated by the
following formula:

TLconsumer ¼ ððd15Nconsumer � d15NzooplanktonÞ=3:4Þ þ 2:

Zooplankton was assumed to be a primary consumer (defined
as inhabiting TP 2) as a trophic baseline. Because trophic enrich-
ment in 15N is more variable for primary consumers than for carni-
vores, using primary consumers as a baseline might reduce error in
the calculation of trophic level (Post et al., 2000; Vander Zanden
and Rasmussen, 2001).

TMFs have been used recently as a more reliable method to as-
sess bioaccumulation potentials of contaminants, especially bio-
magnification in the food web (Borgå et al., 2012; Hallanger
et al., 2011) because TMFs can be investigated independently of
the initial exposure level (Broman et al., 1992). In our study, TMFs
were estimated as the antilog of the regression slope (b) with base
10 (TMF = 10b) of the linear regression between the log concentra-
tion of the target contaminants (lipid wt) and TL of the sample
using the following formula as suggested by Borgå et al. (2012)
and Hallanger et al. (2011):

log½POPs� ¼ aþ bTL:
2.6. Statistics

The concentrations of PCBs, OCPs, and PBDEs were adjusted to
the lipid content contained in the samples for each organism.
Spearman’s rank correlation analysis was performed to investigate
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relationships among target contaminants, and between contami-
nants and d15N in marine organisms. The commercially available
SPSS package (IBM Corp., Armonk, NY, USA) was used for the statis-
tical analysis.
3. Results and discussion

3.1. Contamination status of PCBs, OCPs, and PBDEs

The biological information on 32 specimens collected from the
Yellow Sea is summarized in Table 1. The lipid content on a wet
weight basis ranged from 1.3% (Neptunea cumingi) to 21% (Conger
myriaster), with a narrow range within taxonomic groups. All chlo-
rinated and brominated contaminants including DDTs, PCBs, CHLs,
HCHs, HCB, and PBDEs were detected in all 32 marine species ana-
lyzed (Table 2). The concentration of DDTs (6.9�357 ng g�1 lipid
weight, mean 139 ng g�1 in all the samples except for minke
whales) was the highest among the POPs analyzed. The concentra-
tions of DDTs were one to two orders of magnitude higher than
those of other contaminants. Because large amounts of DDT have
been used for agricultural purposes in China, the Yangtze riverine
discharges into the Yellow Sea could be a major source of DDT con-
tamination in marine biota in this region (Zhang et al., 2007). The
concentrations of PCBs, HCHs, HCB, and CHLs were in the range of
Table 1
Sample details of various marine organisms from the Yellow Sea.

No. Species Common name

1 Zooplankton (mixed)

Fish
2 Pholis fangi White blenny
3 Psenopsis anomala Pacific rudderfish
4 Apogon lineatus Verticalstriped cardinalfish
5 Paralichthys olivaceus Oliver flounder
6 Hexagrammos otakii Greenling
7 Okamejei kenojei Ocellate spot skate
8 Conger myriaster Conger eel
9 Trichiurus lepturus Largehead hairtail

10 Scomber japonicas Chub mackerel
11 Trachurus japonicas Jack mackerel
12 Pleuronichthys cornutus Finespotted flounder
13 Larimichthys polyactis Small yellow croaker
14 Chelidonichthys spinosus Bluefin searobin

Cephalopod
15 Euprymna morsei Mimika bobtail
16 Loligo japonica Japanese squid
17 Octopus variabilis Whiparm octopus

Bivalve
18 Scapharca broughtonii Broughton’s ribbed ark
19 Panopea japonica Japanese geoduck

Gastropod
20 Neptunea cumingi Arthritic neptune
21 Siphonalia fusoides Fusiform whelk
22 Psephaea kaneko Kaneko volute

Crustacea
23 Oratosquilla oratoria Mantis shrimp
24 Palaemon gravieri Chinese ditch prawn
25 Crangon hakodatei Hakodate sand shrimp
26 Solenocera melantho Big head shrimp
27 Pagurus ochotensis Alaskan hermit
28 Oregonia gracilis Decorator crab
29 Charybdis bimaculata Two-spot swimming crab
30 Ovalipes punctatus Sand crab
31 Portunus trituberculatus Swimming crab

Cetacean
32 Balaenoptera acutorostrata Minke whale (male)

32-1 Balaenoptera acutorostrata Minke whale (female)

�: Not measured.
1.5–32 (mean 11) ng g�1 lipid weight, 1.0–40 (mean 7.5) ng g�1 li-
pid weight, 0.6–9.9 (mean 4.6) ng g�1 lipid weight, and 0.4–8.7
(mean 2.7) ng g�1 lipid weight, respectively. The concentrations
of PBDEs ranged from 0.5 to 63 (mean 8.9) ng g�1 lipid weight,
which were similar to those of HCHs. The contamination patterns
of these contaminants were similar to those found in previous
studies of marine organisms from Korean and Chinese coastal envi-
ronments (Liu et al., 2008; Moon et al., 2009, 2010). The concentra-
tions of deca-BDE were in the range of not detectable to 20 ng g�1

lipid weight. These values were several times higher than the con-
centrations of tri- to nonaBDEs. The concentrations of PBDEs in our
study were lower than those found in commercial fish from China
(0.8–69 ng g�1 lipid weight, Meng et al., 2007) and marine organ-
isms from Bohai Bay, China (0.15–33 ng g�1 lipid weight, Wan
et al., 2008).

The concentrations of PCBs and OCPs measured in our study
were compared with those reported for the coastal/offshore waters
of Northeast Pacific regions (Table 3). The overall contamination
status of PCBs and OCPs in our study was similar to that found in
squid from the Yellow Sea (Won et al., 2009). However, the concen-
trations of PCBs and OCPs in fish and shellfish from Chinese and
Japanese waters were one or two orders of magnitude higher than
those measured in our study (Jin et al., 2008; Takahashi et al.,
2010), probably because of the use of large amounts of OCPs in Chi-
na. Indeed, 0.4 million tons of DDTs and their metabolites have
n Body size (cm) Moisture (%) Lipid (%)

1 � � 17

68 15 ± 0.9 64 4.1
23 15 ± 0.6 67 3.7
37 8.7 ± 0.9 68 4.6

1 38 72 2.0
19 22 ± 1.7 69 4.3

6 33 ± 3.1 66 1.7
11 34 ± 5.9 58 21
21 54 ± 7.4 67 4.4

1 26 55 8.3
9 14 ± 1.1 59 5.3

41 13 ± 1.0 66 1.5
28 16 ± 1.4 54 10
15 17 ± 4.1 58 2.8

37 3.5 ± 0.8 63 4.1
10 19 ± 1.4 75 2.9

4 63 ± 22 78 1.5

2 6.5 ± 0.6 48 1.7
1 12 69 1.9

17 11 ± 11 69 1.3
92 5.2 ± 0.5 74 1.4

3 18 ± 1.2 73 1.4

17 11 ± 1.1 67 2.9
171 5.0 ± 0.4 68 1.5
205 8.3 ± 0.8 76 1.7

75 9.5 ± 0.7 70 1.7
61 10 ± 0.6 58 1.3
23 3.9 ± 0.6 68 5.9
78 2.9 ± 0.3 67 4.3
15 3.7 ± 1.4 66 6.0

1 20 66 3.3

6 7333 ± 234 � 6.6 ± 5.2
4 6200 ± 1230 43 ± 2.7 9.7 ± 0.6



Table 2
Concentrations of organohalogen compounds (ng g�1 lipid weight), d13C and d15N values in marine organisms from the Yellow Sea.

No. Common name
P

DDT
P

PCB
P

HCH HCB
P

CHL
P

PBDE d15N d13C

1 Zooplankton 39 1.5 1.0 0.7 0.5 5.5 7.5 �19.1

Fish
2 White blenny 308 14 8.7 9.9 3.6 12 11.8 �18.4
3 Pacific rudderfish 46 3.8 4.5 2.3 6.9 1.7 12.4 �13.6
4 Verticalstriped cardinalfish 144 12 7.9 6.4 4.6 5.7 11.4 �16.6
5 Oliver flounder 197 11 5.5 4.3 2.1 3.9 12.1 �14.3
6 Greenling 357 26 15 9.3 3.8 12 12.4 �18.0
7 Ocellate spot skate 26 2.8 3.7 1.9 0.7 1.4 11.5 �15.7
8 Conger eel 292 11 8.8 5.4 2.9 5.1 13.3 �17.2
9 Largehead hairtail 214 8.4 10 4.5 2.9 7.5 11.9 �15.6

10 Chub mackerel 336 8.8 18 6.4 2.9 6.2 9.5 �18.5
11 Jack mackerel 60 3.1 5.5 3.0 2.5 2.2 12.2 �14.7
12 Finespotted flounder 122 7.5 13 6.6 1.1 4.7 10.5 �16.2
13 Small yellow croaker 247 11 7.5 6.5 3.9 11 10.9 �17.1
14 Bluefin searobin 130 8.6 5.0 4.5 2.1 6.6 12.1 �15.3

Cephalopod
15 Mimika bobtail 177 6.3 2.9 5.2 4.4 10 10.5 �16.6
16 Japanese squid 75 7.1 1.5 2.7 1.5 9.4 12.9 �13.2
17 Whiparm octopus 63 9.3 1.5 4.0 0.8 8.2 11.4 �15.9

Bivalve
18 Broughton’s ribbed ark 48 8.9 4.0 3.1 0.9 3.2 8.3 �16.2
19 Japanese geoduck 108 7.9 40 5.1 1.6 5.9 8.6 �17.1

Gastropod
20 Arthritic neptune 158 12 2.1 2.6 2.1 5.5 11.4 �14.3
21 Fusiform whelk 70 15 3.1 6.9 1.2 2.3 12.1 �14.4
22 Kaneko volute 42 9.8 2.6 1.8 1.5 2.5 12.8 �14.8

Crustacea
23 Mantis shrimp 61 16 5.2 0.6 3.0 6.1 12.5 �14.3
24 Chinese ditch prawn 47 5.9 3.8 4.5 1.6 9.3 10.7 �14.6
25 Hakodate sand shrimp 69 5.5 4.1 1.7 0.9 16 10.5 �17.2
26 Big head shrimp 6.9 5.3 1.5 2.5 0.4 5.4 11.3 �16.2
27 Alaskan hermit 105 14 17 3.3 3.7 14 11.2 �16.8
28 Decorator crab 314 32 13 7.5 4.0 5.2 11.4 �17.5
29 Two-spot swimming crab 147 26 2.3 8.0 4.3 6.2 10.4 �16.9
30 Sand crab 121 17 9.5 7.1 4.0 15 11.3 �16.0
31 Swimming crab 172 9.1 3.4 3.4 8.7 2.2 11.4 �16.2

Cetacean
32 Minke whale (male) 1581 ± 1038 690 ± 398 189 ± 279 39 ± 20 80 ± 46 115 ± 62 10.9 �17.9

32-1 Minke whale (female) 202 ± 129 20 ± 13 48 ± 50 5.4 ± 4.4 5.3 ± 4.3 9.4 ± 0.9 10.5 �16.5

Table 3
Comparison of concentrations (range and mean, ng g�1 lipid wt) of PCBs and OCPs in the marine biota from northeast Asian regions.

Location Species Year DDTs PCBs HCHs HCB CHLs Reference

Northeast coast of China Bivalves 2005 2240�33,086 53�314 33�296 nd-24 Jin et al. (2008)
(769) (157) (151) (10)

Yellow Sea (Korea) Squid 2006 118�698 70�275 3.0�11 5.0�8.0 4.0�22 Won et al. (2009)
(326) (131) (7.0) (6.0) (8.0)

Western north pacific (Japan) Deep-sea fish 2005 14�830 nd-2200 nd-150 nd-100 3.9�640 Takahashi et al. (2010)
(110) (150) (25) (21) (54)

Yellow Sea Marine biota 2007 6.9�357 1.5�32 1.0�40 0.6�9.9 0.4�8.7 This study
(139) (11) (7.5) (4.6) (2.7)
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been produced in China (Zhang et al., 2002), and technical CHLs are
still being used for termite extermination in China (Xu et al., 2004).
HCHs and HCB are also produced and used in China, and conse-
quently intense pollution by these chemicals is expected in adja-
cent environments (Wu et al., 1997a).

Pearson correlation coefficients showed significant relation-
ships between DDTs, PCBs, CHLs, HCHs, HCB, and PBDEs
(r = 0.924�0.980, p < 0.001). This finding suggests that these con-
taminants have similar sources and/or bioaccumulation behavior
in the marine food web.

In this study, significantly higher levels of contaminants were
found in male minke whales (Balaenoptera acutorostrata) than in
female minke whales, indicating a sex difference in the concentra-
tions of POPs. Previous studies confirmed that maternal transfer
and lactation are the major excretion processes for PCBs, OCPs,
and PBDEs in female mammals (Aguilar et al., 1999; Moon et al.,
2010; Park et al., 2010).

3.2. Accumulation features of PCBs, OCPs, and PBDEs

The accumulation profiles of PCBs, OCPs, and PBDEs in marine
species from the Yellow Sea are shown in Fig. 2. The accumulation
patterns of PCBs were relatively uniform in the species examined,
suggesting that PCBs have a greater stability for metabolic trans-
formation (Moon et al., 2010). The predominant congeners of PCBs
were PCBs 153, 138, and 118, which collectively accounted for 44%



Fig. 2. Accumulation profiles of PCBs, OCPs, and PBDEs in marine species from the Yellow Sea. Zp, zooplankton; Bi, bivalve; Ce, cephalopod; Fi, fish; Cr, crustacean; Ga,
gastropod; Mf, female minke whale; Mm, male minke whale.
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of the total PCB concentrations; these values are consistent with
data in previous studies (Moon et al., 2009; Takahashi et al.,
2010). A number of studies have reported that the bioaccumulation
potentials of organochlorine (OC) compounds are associated with
the octanol–water partition coefficient (logKow) (Fisk et al., 2001;
Moisey et al., 2001; Goerke et al., 2004; Nfon et al., 2008). Nfon
et al. (2008) reported that the greatest accumulation values for
OCs are found in the logKow range of 6.5 to 7.0 and decrease
when > 7.5 of logKow. The logKow values of the tri- to penta-CBs
range from 5.5 to 6.5, and the hexa- to deca-CBs range from 6.7
to 8.26 (Mackey et al., 1992). The accumulation patterns of PCBs
found in our study were characterized by the dominance of hexa-
and hepta-CBs, which ranged from 6.7 to 7.6 of logKow, except for
zooplankton and bivalves. Our observation indicates that the accu-
mulation features of PCB in marine species from the Yellow Sea are
governed by the physicochemical properties (Kow) of these
contaminants.

The contributions of individual OCP compounds varied widely
between marine species, indicating a lower stability compared
with PCBs. For DDTs, the major compounds were p,p0-DDE, p,p0-
DDT, and p,p0-DDD, which collectively accounted for 85% of DDTs
(Fig. 2b). p,p0-DDE and p,p0-DDD are metabolites of DDT in the envi-
ronment and biota. Among CHL and HCH isomers, trans-nonaCHL
and b-HCH were the major components (Fig. 2c and d). The pre-
dominance of these contaminants in marine species is associated
with metabolism. In general, the compounds with a logKow < 5.5
(HCHs, CHLs, and HCB) have lower capacities for bioaccumulation
in marine organisms (Mackey et al., 1999). However, because of
their limited metabolism, b-HCH and oxy-, trans-, and cis-nonaCHL
have higher bioaccumulation potentials relative to other isomers of
HCHs and CHLs (Wu et al., 1997b; Willett et al., 1998). Similar re-
sults have been found in other studies (Ruus et al., 1999; Fisk et al.,
2001; Hop et al., 2002; Ikemoto et al., 2008).

The accumulation patterns of PBDE congeners differed between
marine species because of differing stabilities of PBDE congeners
(Fig. 2e). In particular, fish and male minke whales did not contain
BDE 209 because of the lower bioaccumulation potentials for these
species. However, other species such as bivalves and crustaceans
showed a predominance of BDE 209 in the total PBDE concentra-
tion. Mizukawa et al. (2009) reported that BDE 209 may not per-
meate through biological membranes because of its large
molecular size (MW = 959). The high proportion of BDE 209 in
some marine species may be associated with the high consumption
of deca-BDE in coastal zones of Korea. Korea accounts for 50% of to-
tal deca-BDE use in Asia because of the rapid growth of its elec-
tronic industries (Moon et al., 2007, 2010). In addition, the
greatest contamination by PBDEs has been reported in Chinese
coastal waters such as the Pearl River Delta and Bo Sea (Mai
et al., 2005; Wang et al., 2009). Therefore, the predominance of
deca-BDE in various species reported here seems to relate to the lo-
cal and ongoing sources of PBDE products in the Yellow Sea coastal
region.
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3.3. Bioaccumulation potentials of PCBs, OCPs, and PBDEs

The d13C and d15N values ranged from �19.1‰ in zooplankton
to �13.2‰ in Japanese squid (Loligo japonica) and 7.5‰ in zoo-
plankton to 13.3‰ in conger eel (C. myriaster), respectively (Ta-
ble 2). Zooplankton, which constitutes an important prey item of
higher-trophic organisms in marine ecosystems, had the lowest
d13C and d15N values of all the specimens analyzed. Bivalves, which
are characterized as suspension feeders that consume plankton
and other organic detritus, had lower d15N values (8.3‰ in Scaph-
arca broughtonii and 8.6‰ in Panopea japonica) compared with
other species.

The dual-isotope plot of d13C and d15N of all consumers ana-
lyzed differentiated two trophic pathways (Fig. 3). Based on the
d13C values, two groups that may use different carbon sources were
identified. One group, whose d13C values ranged from �19.1 to
�18.0‰, comprised pelagic consumers including zooplankton,
white blenny (Pholis fangi), greenling (Hexagrammos otakii), and
chub mackerel (Scomber japonicus). The other group, with d13C val-
ues of �17.0 to �13.2‰, comprised benthic consumers including
bivalve, cephalopod, crustacean, gastropod, and the other fish spe-
cies. It seems to be plausible to divide the organisms into two
groups (i.e., pelagic and benthic food-chain components) based
on their d13C values. Separation by d13C values between pelagic
and benthic feeding groups has been observed elsewhere (France,
1995; Yoshii et al., 1999; Hobson et al., 2002; Mincks et al.,
2008). For example, the d13C values of two bivalves (S. broughtonii
and P. japonica), which constitute the trophic baseline of the ben-
thic food web, were 2–3‰ higher than the mean value of
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�19.1‰ in zooplankton. Moreover, d13C values of Japanese squid
(L. japonica) and Pacific rudderfish (Psenopsis anomala) were up
to 5‰ higher than those of pelagic feeding fish, white blenny,
and greenling. The 13C-enrichment in the benthic food chain may
be explained by substantial reworking of sedimentary organic mat-
ter before uptake by benthic fauna (Mincks et al., 2008). The d13C
values in particulate organic matter at the sediment–water bound-
ary can be shifted by 1–4‰ because of the intensity and/or mode of
benthic remineralization (Fischer, 1991). Furthermore, benthic,
detritus-based food webs display 4–5‰ greater enrichment of
d13C relative to particulate organic matter compared with pelagic
consumers (Hobson et al., 1995; Nyssen et al., 2002; Mincks
et al., 2008). These authors presumed that such a great 13C-enrich-
ment in the benthic food chain can be explained by the assimila-
tion of microbial and/or meiofaunal biomass and the strong
carbon fractionation effects of bacterial metabolism.

As mentioned earlier, the meiofaunal d15N of an animal in-
creases by 3–5‰ at each trophic transfer, with an average of
3.4‰ for a wide variety of taxa (Minagawa and Wada, 1984; Mich-
ener and Schell, 1994; Hobson et al., 1995). Because of this rela-
tively large trophic fractionation, the measurement of d15N has
been used as a numerical representative of trophic position (Post,
2002). Since the d15N value of an animal reflects assimilated die-
tary integration over time, d15N can be a sensitive trophic descrip-
tor and thus a good predictor of contaminant biomagnification
(Cabana and Rasmussen, 1994; Atwell et al., 1998; Hobson et al.,
2002). These authors suggested that the bioaccumulation poten-
tials and trophic transfer of organic contaminants through aquatic
food webs can be examined by the relationship between d15N and
contaminant levels in the tissues of organisms.

Pelagic and benthic consumer groups showed different biomag-
nification patterns of specific compounds (or congeners) of PCBs,
OCPs, and PBDEs. In the pelagic feeding group (zooplankton, P. fan-
gi, H. otakii, and S. japonicas), the concentrations of the major cong-
eners such as PCBs 153, 138, p,p0-DDE, oxy-CHL, and trans-nonaCHL
were significantly higher with increasing d15N values (p < 0.01,
Spearman’s rank correlation test, Fig. 4a). These compounds are
generally known to have a high food-chain magnification factor
within the logKow range of 5.0 to 7.0 (Goerke et al., 2004; Nfon
et al., 2008). The remaining compounds, including all the PBDE
congeners, did not display any relationships with d15N (data not
shown). In the benthic feeding group, there were no significant
relationships between any POP and the d15N value (p > 0.05,
Fig. 4b). This result can likely be attributed to the narrower d15N
range of 10.4‰ (Charybdis bimaculata) to 12.9‰ (L. japonica) in
most of the consumers of this group compared with the pelagic
food-chain counterparts.

PCBs 153 and 138, p,p0-DDE, oxy-CHL, and trans-nonaCHL in pe-
lagic species had significantly higher TMF values (PCB 153, 8.3; PCB
138, 8.0; p,p0-DDE, 5.6; oxy-CHL, 5.6; trans-nonaCHL, 4.6) compared
with benthic species. Despite TMF values > 1 for several congeners
(PCB 180, 1.23; p,p0-DDT, 1.08; BDE 209, 1.11), benthic components
had TMF values < 1 for most target compounds or congeners. To
understand better the status of biomagnification in the study area,
the TMF values of PCBs 153 and 138, p,p0-DDE, oxy-CHL, and trans-
nonaCHL in the pelagic food web from the Yellow Sea were com-
pared with those reported for different food webs (Table 4). The
TMF values estimated in our study, except for trans-nonaCHL, were
similar to those found in the Northwater polynya food web (Fisk
et al., 2001). Our TMF values were significantly lower than those
found in the Arctic marine food web but were higher than those
found in the Barents Sea food web. Such a narrow d15N range in
benthic consumer group indicates that they occupy nearly the
same ecological niche and thereby have similar levels of biomagni-
fication for the contaminants analyzed.
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Table 4
Comparison of trophic magnification factors (TMFs) between the Yellow Sea and other locations.

Location PCB153 PCB138 oxy-CHL tran-nonaCHL p,p0-DDE Reference

Arctic sea 32 50 23 4.5 11 Hallanger et al. (2011)
Northwater Polynya 9.7 8.8 6.5 5.5 14 Fisk et al. (2001)
Barents Sea 4.1 3.7 4.4 5.0 3.7 Hop et al. (2002)
Yellow Sea 8.3 8.0 5.6 4.6 5.6 This study

G.-H. Byun et al. / Marine Pollution Bulletin 73 (2013) 210–219 217
The limited food-chain biomagnification has been previously
observed in other studies and might reflect the metabolic capabil-
ity of higher-trophic invertebrates and crustaceans, which consti-
tute important components of benthic assemblages (Kidd et al.,
2001; Nfon et al., 2008; references therein). Metabolic characteris-
tics of benthic prey organisms could explain the low OC concentra-
tions in fish that have a strong trophic link to the benthic food
chain (Table 2). The concentrations of OCs in higher-trophic-level
consumers may also be explained by processes at the trophic base
(i.e., algal growth conditions) of the food web, particle dilution of
the contaminants, and growth rates of the consumers (Kidd et al.,
2001). However, more precise information on the effects of these
factors on the biomagnification of contaminants is lacking at
present.

The d15N values (10.9 ± 0.4 for males and 10.5 ± 0.5 for females)
of minke whale (B. acutorostrata) were similar to or lower than
those of fish and invertebrates. The main prey items of B. acutoro-
strata are small invertebrates and fish such as shrimp and anchovy,
as characterized for the baleen whale (Stewart and Leatherwood,
1985). However, the d15N values of many replicates are similar to
or lower than those of shrimp, prawns, and small fishes in the pres-
ent study. The Yellow Sea is an important habitat of minke whales
in western North Pacific (the East/Japan Sea�Yellow Sea�East Chi-
na Sea, Tamura and Fufise, 2002). In the Yellow Sea, it is known
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that the female minke whales move to the northern part of the Yel-
low Sea in October and stay there until next July, and they leave
the Yellow Sea with pups after delivery. Most of adults of male
minke whale do not move to northern part of the Yellow Sea in
the same season (Peilie, 1985). Considering the trophic fraction-
ation effect, their low d15N values suggest limited foraging activity
in this study area, further indicating that they have true feeding
grounds in other locations. Their active migration may complicate
use of the d15N approach to identify their trophic position. Despite
their relatively low d15N values, B. acutorostrata had higher concen-
trations of all contaminants than those found in other species in
the present investigation (Table 2), possibly because of their huge
amount of prey consumption and relatively low metabolic activi-
ties (Tanabe, 2002; Tamura and Fufise, 2002; Moon et al., 2010).
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