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Significant and conservative 
long-range transport of dissolved 
organic nutrients in the Changjiang 
diluted water
Hyeong Kyu Kwon1, Guebuem Kim1, Jeomshik Hwang1, Weol Ae Lim2, Jong Woo Park2 &  
Tae-Hoon Kim3

The Changjiang River is one of the main nutrient sources in the northwestern Pacific marginal seas. 
However, most of the previous studies have neglected the long-range transport (>200 km) of riverine 
nutrients since they are rapidly consumed. In this study, we examined the long-range transport 
(200–800 km) of nutrients in the surface layer during the summer of 2017. The plots of nutrients against 
salinity display that dissolved organic nitrogen (DON) was conservative over ~800 km, while more than 
99% of the dissolved inorganic nitrogen (DIN) was removed within 200 km. As a result, in the study 
region, DON concentrations (avg. 7.0 ± 1.3 µM), which are minor in the river water, were much higher 
than DIN concentrations (avg. 0.28 ± 0.26 µM). Both nutrients, N and P, showed a similar pattern. 
Our results suggest that dissolved organic nutrients play a critical role on the long-range transport of 
riverine nutrients in surface waters and subsequent ecosystem changes.

In the global ocean, the riverine inputs of nutrients (37–66 Tg N yr−1 and 4–11 Tg P yr−1)1–3 may rival the atmos-
pheric depositional fluxes (67 Tg N yr−1 and 0.54 Tg P yr−1)4,5. The largest fluxes of dissolved inorganic nitrogen 
(DIN) and phosphorus (DIP) from major rivers include the Amazon River (1.16 Tg N yr−1 and 0.13 Tg P yr−1), 
Mississippi River (0.82 Tg N yr−1 and 0.05 Tg P yr−1), Changjiang River (0.59 Tg N yr−1 and 0.02 Tg P yr−1), 
Rhine River (0.36 Tg N yr−1 and 0.02 Tg P yr−1), and the Ob River (0.30 Tg N yr−1 and 0.03 Tg P yr−1)2,6–10. 
Approximately 80% of the dissolved riverine nutrients are known to reach the open ocean11. On the other hand, 
the riverine fluxes of dissolved organic nitrogen (DON, 0.22–1.13 Tg N yr−1) and phosphorus (DOP, 0.01–0.09 Tg 
P yr−1) are known to account for a minor portion of the dissolved total nutrients in the global ocean2.

The Changjiang River is one of the main nutrient sources in the northwestern Pacific marginal seas. Over the past 
50 years, the riverine fluxes of DIN and DIP have increased approximately 6-fold due to the large-scale use of chem-
ical fertilizers in the Changjiang River basin12. According to the DIN budget for the East China Sea12–14, the DIN 
flux from the Changjiang River (~1.54 Tg N yr−1) is larger than the atmospheric depositional flux (~0.7 Tg N yr−1).  
The rapid increase in anthropogenic nutrient supply often resulted in the shift from N-limited to P-limited condi-
tions for biological production in the Korea/Tsushima Strait from 2007 to 201415. On the other hand, the exports 
of suspended sediments were significantly decreased by approximately 50% following the construction of the 
Three Gorges Dam in 200312, although nutrients can be enhanced by about 40% in the estuarine mixing zone due 
to desorption from sediments16. However, the long-range transport of dissolved organic nutrients in this region 
is poorly understood.

Thus, in this study, we measured dissolved inorganic and organic nutrients in the downstream of the 
Changjiang estuary over a long distance (200–800 km) since most of the previous studies were conducted within 
200 km13,16–20. Although it is ideal to include the entire salinity range from the river to 800 km in the study region, 
we could not arrange sampling cruises in both Chinese and Korean territories. Therefore, we occupied our study 
region (200–800 km) twice in the same season, and all previous data within 800 km were included in this study in 
order to look at the general processes occurring in this region (Fig. 1).

1School of Earth and Environmental Sciences/Research Institute of Oceanography, Seoul National University, Seoul, 
08826, Republic of Korea. 2Ocean Climate and Ecology Research Division, National Institute of Fisheries Science, 
Busan, 46083, Republic of Korea. 3Department of Earth and Marine Sciences, Jeju National University, Jeju, 63243, 
Republic of Korea. Correspondence and requests for materials should be addressed to G.K. (email: gkim@snu.ac.kr)

Received: 30 May 2018

Accepted: 8 August 2018

Published: xx xx xxxx

OPEN

mailto:gkim@snu.ac.kr


www.nature.com/scientificreports/

2SCIENtIFIC Reports |  (2018) 8:12768  | DOI:10.1038/s41598-018-31105-1

Materials and Methods
Study region.  The study region is located in the northwestern Pacific Ocean, including the South China Sea, 
East China Sea, and East Sea (Sea of Japan) (Fig. 1). The primary source of freshwater in the East China Sea, which 
is one of the largest continental shelves in the world, is river runoff, and approximately 90% of the terrestrial 
materials entering are derived from the Changjiang River18. The discharge, which empties into the Changjiang 
estuary, forms a water type called the Changjiang diluted water (CDW), generally with salinity ≤31, by mixing 
with ambient seawater21. The Kuroshio branch water, which is a strong western boundary current and very oli-
gotrophic, flows into the study region. Here, the branch of the Kuroshio Current mixes with the river waters, 
thereby obtaining large amounts of terrestrial organic matter and nutrients17,18. CDW flows southward along the 
Chinese coast in the winter, but in the summer it generally extends north-eastwards toward Jeju Island and even 
up to the East Sea21,22 (Fig. 1).

Sampling and analyses.  Surface seawater samples were collected during two periods in the East China 
Sea (Fig. 1) from August 16 to 19, 2017 on the R/V Ara of Jeju National University, Korea, and from August 22 to 
September 6, 2017 on the R/V Tamgu-3 and the R/V Tamgu-8 of National Institute of Fisheries Science (NIFS), 
Korea. Seawater samples were collected using Niskin bottles mounted on a CTD rosette sampler. Salinity was 
measured using a portable sensor (Orion star A329, Thermo Scientific).

Seawater samples for nutrients were filtered through pre-combusted (450 °C, 4 h) glass-fiber filters (Whatman 
GF/F, 47 mm in diameter, 0.7 µm in pore size) and stored frozen (−20 °C) until analysis. Dissolved inorganic 
nutrients, including NH4

+, NO2
−, NO3

−, and PO4
3−, were analyzed using a nutrient auto-analyzer (New 

QuAAtro39, SEAL Analytical). Reference seawater materials of nutrients (KANSO Technos, Tsukuba, Japan) 
were run for verification of analyses. The detection limits for NH4

+, NO2
−, NO3

−, and PO4
3− were 0.03 µM, 

0.01 µM, 0.02 µM, and 0.01 µM, respectively. In this study, the sum of NH4
+, NO2

−, and NO3
− is considered as 

DIN, and PO4
3− is considered as DIP. Total dissolved nitrogen (TDN) and phosphorus (TDP) analyses were 

determined using the method described by Grasshoff et al.23. Briefly, an acid potassium persulfate (N and P anal-
ysis grade, Wako) solution was added to a filtered seawater sample, and then autoclaved at 120 °C for 30 min. The 
resulting NO3

− and PO4
3− were measured with the auto-analyzer as described above. The accuracy of the TDN 

concentrations was verified using the deep-seawater reference material (32–33 µM; University of Miami, USA). 
The concentrations of DON and DOP were calculated by subtracting the measured DIN and DIP concentrations 
from the measured TDN and TDP concentrations, respectively.

Results and Discussion
Distributions of salinity and dissolved nutrients in the East China Sea.  The salinity ranged from 
25.33 to 33.99 (avg. 29.79 ± 1.99) in the surface waters of the study region (Supplementary Table S1). The salin-
ity distribution in the surface waters shows that the low-salinity (<31) water is widely distributed over the East 
China Sea (Fig. 1), due to the influence of CDW24. A patch of low-salinity water (<28) was observed in the south-
western region of Jeju Island, which seems to be detached from the Changjiang plume21,25. In general, higher con-
centrations of nutrients were observed in the lower salinity areas, including the low-salinity patch area (Fig. 2).

The concentrations of nutrients in the study region, including all previous data observed in this region, were 
plotted against the distance from the estuary (Fig. 3). It is clear that DIN and DIP concentrations decreased 
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Figure 1.  Map showing sampling stations and schematic patterns of surface currents in the northwestern 
Pacific marginal seas during the summer. The solid arrows represent the surface currents, such as the 
Changjiang diluted water (CDW), the Kuroshio Current (KC), and the Tsushima Warm Current (TWC) 
originating from KC. Open circles denote reference stations obtained from Chen et al.17,18 and Gao et al.19. 
Contour map denotes horizontal distribution of salinity in surface waters of the East China Sea from August 22 
to September 6, 2017. The contour map was created using Ocean Data View software version 5.0.0. (Schlitzer, 
R., Ocean Data View, odv.awi.de, 2017) and the sampling stations and current patterns were drawn using Adobe 
Illustrator CS6 software version 16.0.0. (https://www.adobe.com).

https://www.adobe.com
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sharply from 153 µM and 2.6 µM to 0.16 µM and 0.05 µM, respectively, within 200 km from the estuary. They are 
consistently depleted from 200 to 800 km (Fig. 3). As such, DIN:DIP ratios decreased sharply from 65 to 3 and 
remained constant (5 ± 7) in the study region (Fig. 2). In contrast, the concentrations of DON (20 µM) and DOP 
(0.54 µM) were minor in the river water and decreased slightly within 200 km (perhaps due to vigorous mixing 
between river water and seawater). They were constantly high, relative to DIN and DIP, from 200 to 800 km. The 
ratios of DON:DOP were about 33 ± 11 (Fig. 2; Supplementary Table S1), similar to the values obtained previ-
ously from Changjiang River waters26–28, over the entire region (0–800 km). In the study region (200–800 km), the 
concentrations of DIN and DIP were lower than 1.3 µM (avg. 0.28 ± 0.26 µM) and 0.22 µM (avg. 0.07 ± 0.04 µM), 
respectively, which were much lower than the concentrations of DON (3.4–10.1 µM, avg. 7.0 ± 1.3 µM) and DOP 
(0.09–0.47 µM, avg. 0.24 ± 0.08 µM) (Figs. 2 and 3; Supplementary Table S1). This trend suggests that the contri-
butions of DON and DOP to the TDN and TDP were dominant (about 96 ± 3% for TDN and about 78 ± 10% for 
TDP) in the study region, although they were minor in the source river water.

Figure 2.  Horizontal distributions of (a) DIN, (b) DIP, (c) DON, (d) DOP, (e) DIN:DIP ratio, and (f) 
DON:DOP ratio in surface waters of the East China Sea from August 22 to September 6, 2017. The contour 
maps were created using Ocean Data View software version 5.0.0. (Schlitzer, R., Ocean Data View, odv.awi.de, 
2017).
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Behaviors of dissolved nutrients during the long-range transport.  In order to understand the 
behaviors of nutrients over the long-range transport, the concentrations of DIN, DIP, DON, and DOP were 
plotted against salinities (Fig. 4). The concentrations of DIN and DIP show conservative mixing patterns for 
low-salinity waters (salinity < 20). They were then sharply removed and depleted in the study region, depending 
on the distance from the estuary, mainly between 100 km and 200 km (Figs. 3 and 4). The conservative mixing 
patterns in the low-salinity water have been reported by Yao et al.16 and Chen et al.17. Zhang29 attributed the con-
servative behavior of DIN and DIP in this zone to low primary production (chlorophyll a < 5 µg L−1) owing to 
high total suspended matter (up to 1300 mg L−1), causing limited light penetration, up to a distance of ~50 km off 
the river mouth. Zhang29 also showed a sharp increase in chlorophyll a concentration up to 20 µg L−1 at a distance 
of approximately 100 km off the Changjiang estuary, followed by a rapid decrease toward the open ocean. As such, 
the concentrations of DIN (0.28 ± 0.26 µM) and DIP (0.07 ± 0.04 µM) in the study region were much lower the 
expected concentrations of DIN (11.2 ± 6.7 µM) and DIP (0.16 ± 0.09 µM) from conservative mixing (Fig. 4). 
This seems to be associated with rapid consumption of DIN and DIP by phytoplankton. In general, the consumed 
nutrients are known to be mostly re-mineralized in the subsurface layer in this region13.

In contrast to DIN and DIP, the concentrations of DON (7.0 ± 1.3 µM) and DOP (0.24 ± 0.08 µM) measured 
in the study region were similar to the expected concentrations of DON (6.7 ± 0.8 µM) and DOP (0.38 ± 0.02 µM) 
from conservative mixing (Fig. 4). This result indicates that organic nutrients are conservatively mixed from 
the river mouth water to the offshore water up to 800 km (Figs. 3 and 4). The arrival time of CDW from the 
Changjiang River mouth to the vicinity of Jeju Island (~450 km) was estimated to be 20–35 days, based on the 
horizontal distribution of 223Ra activities24. During this transport time, the degradation of dissolved organic nutri-
ents should be insignificant considering the fact that only approximately 7–11% of the riverine dissolved organic 
carbon (DOC) in seven river estuaries of the southeastern USA is decomposable in a 100 day timeframe due to 

Figure 3.  Distributions of (a) nitrogen (DIN and DON) and (b) phosphorus (DIP and DOP) in surface waters 
plotted against distance off the Changjiang estuary during the summer. The reference data between 2003 
and 2012 are obtained from Chen et al.17,18 and Gao et al.19. The blue filled symbols denote DON and DOP 
concentrations in the Changjiang River obtained from Liu et al.26,27 and Shen and Liu28. The distances were 
calculated between Chongming Island (located in the Changjiang estuary) and each sampling station using the 
latitude and longitude of those points.
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the large portions of recalcitrant humic DOC30,31. Similarly, the production of dissolved organic nutrients might 
be insignificant (~10% relative to the DON change of ~14 µM) if the known production rate of DON (~2 nmol 
N L−1 h−1) in eutrophic oceans (i.e., Southern California Bight, shelf break of Atlantic off Spain, and Chilean 
upwelling region)32–34 is applied. In addition, the atmospheric deposition of DON by precipitation or vertical 
mixing seems to be negligible considering that the concentrations of DON in the surface water in the study 
region, precipitation35, and the subsurface water in this region13 are similar under a strong vertical stratification 
in summer. Thus, we conclude that the other sources and sinks cannot influence significantly the distributions of 
DON and DOP in the study region and perhaps are included in the scattering of the plots (Fig. 4).

In order to estimate the removal of nutrients in the mixing zone (0–800 km), we calculated the conservative 
mixing proportions between river water and pristine open-ocean seawater in the study region. The end-member 
concentrations of DIN, DIP, DON, and DOP were assumed to be 153 µM, 2.6 µM, 20 µM, and 0.54 µM for river 
waters19,26–28 and 0.04 µM, 0.004 µM, 5.2 µM, and 0.20 µM for open ocean waters from Fig. 4, respectively. In the 
study region, about 100% (99–100%) and 97% (92–100%) of riverine DIN and DIP were removed. However, the 
contribution of riverine DON and DOP to the total DON and DOP (including open ocean sources) were about 
34% (17–49%) and 44% (16–88%), respectively, due to their conservative mixing. Therefore, riverine DON and 
DOP seem to be important for the transport of riverine nutrients to the open ocean and subsequent changes in 
nutrient conditions for ecosystem in the surface layer.

Figure 4.  Scatterplots of (a) DIN, (b) DON, (c) DIP, and (d) DOP versus salinities in surface waters of the 
Changjiang estuary and East China Sea. The reference data between 2003 and 2012 are obtained from Chen 
et al.17,18, Gao et al.19, Liu et al.26,27, and Shen and Liu28. The solid lines indicate the relationship between 
salinity and inorganic nutrients from the Changjiang estuary (0 km) to 200 km. The dashed lines indicate the 
relationship between salinity and inorganic nutrients or organic nutrients from 200 to 800 km. The gray filled 
arrows denote the removed DIN and DIP from the expected concentrations by conservative mixing.
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The proportions of DON and DOP against TDN and TDP observed in the study region were comparable to 
those observed in major oligotrophic oceans, such as the eastern subtropical North Pacific Ocean (DON: 5–6 µM, 
96–99% of TDN, DOP: 0.1–0.35 µM, 75–90% of TDP)36, South Pacific Ocean (DON: 5.5–6 µM, 100% of TDN, 
DOP: 0.1–0.25 µM, 20–50% of TDP)37, and Atlantic Ocean (DON: 3.5–6.5 µM, 55–100% of TDN, DOP: 0.07–
0.43 µM, 67–100% of TDP)38. Thus, the role of DON and DOP concentrations, together with their ratios, in the 
study region may be similar to that in other major oceans. For example, diatoms dominate in the inshore waters 
(salinity < 31 and DIN > 10 µM) due to the strong influence of the Changjiang plume in the East China Sea, while 
the density of dinoflagellates increases gradually with distance away from the diatom dominated zone20. This 
could happen because many dinoflagellate species are capable of taking up organic nutrients39,40, although this 
process is limited for diatoms39,41.

Conclusions
The concentrations of riverine DIN and DIP decreased sharply from the Changjiang River estuary and depleted 
within 200 km from the river mouth, and the concentrations of DIN and DIP were about 0.28 µM and 0.07 µM, 
respectively, between 200 and 800 km. This seems to be associated with rapid consumption of inorganic nutrients 
by phytoplankton. In contrast, DON and DOP exhibited conservative mixing behaviors up to 800 km, and their 
concentrations were about 7.0 µM and 0.24 µM, respectively, between 200 and 800 km. Therefore, DON and DOP 
account for about 96% and 78% of TDN and TDP, respectively, between 200 and 800 km, although their propor-
tions were minor in the river water. Our results suggest that dissolved organic nutrients play a critical role on 
riverine nutrient transport to the surface waters of the open ocean. Further studies are necessary to determine the 
role of riverine nutrient composition changes on ecosystem changes in the remote oceans.

Data Availability.  The datasets analysed during the current study are available from the corresponding 
author on reasonable request.

References
	 1.	 Seitzinger, S. P. et al. Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient 

Export from Watersheds (NEWS) models and their application. Glob. Biogeochem. Cycle. 19, GB4S01 (2005).
	 2.	 Mayorga, E. et al. Global Nutrient Export from WaterSheds 2 (NEWS 2): Model development and implementation. Environ. Modell. 

Softw. 25, 837–853 (2010).
	 3.	 Beusen, A. H. W. et al. Global riverine N and P transport to ocean increased during the 20th century despite increased retention 

along the aquatic continuum. Biogeosciences 13, 2441–2451 (2016).
	 4.	 Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Glob. Biogeochem. Cycle. 

20, GB4003 (2006).
	 5.	 Krishnamurthy, A. et al. Impacts of atmospheric nutrients inputs on marine biogeochemistry. J. Geophys. Res. 115, G01006 (2010).
	 6.	 Alexander, R. B., Slack, J. R., Ludtke, A. S., Fitzgerald, K. K. & Schertz, T. L. Data from selected U.S. Geological Survey national 

stream water quality monitoring networks. Water Resour. Res. 34, 2401–2405 (1998).
	 7.	 Harrison, J. A. et al. Dissolved inorganic phosphorus export to the coastal zone: Results from a spatially explicit, global model. Glob. 

Biogeochem. Cycle. 19, GB4S03 (2005).
	 8.	 Holmes, R. M. et al. 2000. Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to 

judge future changes. Water Resour. Res. 36, 2309–2320 (2000).
	 9.	 Meybeck, M. & Ragu, A. River discharges to the oceans: an assessment of suspended solids, major ions, and nutrients. 245 pp (UNEP 

publication, 1997).
	10.	 Yan, W. & Zhang, S. The composition and bioavailability of phosphorus transport through the Changjiang (Yangtze) River during 

the 1998 flood. Biogeochemistry 65, 179–194 (2003).
	11.	 Sharples, J., Middelburg, J. J., Fennel, K. & Jickells, T. D. What proportion of riverine nutrients reaches the open ocean? Glob. 

Biogeochem. Cycle. 31, 39–58 (2017).
	12.	 Dai, Z. et al. Variation of riverine material loads and environmental consequences on the Changjiang (Yangtze) estuary in recent 

decades (1955–2008). Environ. Sci. Technol. 45, 223–227 (2011).
	13.	 Zhang, J. et al. Nutrient gradients from the eutrophic Changjiang (Yangtze River) estuary to the oligotrophic Kuroshio waters and 

re-evaluation of budgets for the East China Sea Shelf. Prog. Oceanogr. 74, 449–478 (2007).
	14.	 Kim, S. K., Chang, K. I., Kim, B. & Cho, Y. K. Contribution of ocean current to the increase in N abundance in the Northwestern 

Pacific marginal seas. Geophys. Res. Lett. 40, 143–148 (2013).
	15.	 Kodama, T. et al. Presence of high nitrate to phosphate ratio subsurface water in the Tsushima Strait during summer. J. Oceanogr. 73, 

759–769 (2017).
	16.	 Yao, Q. Z. et al. Transformation and source of nutrients in the Changjiang Estuary. Sci. China-Chem. 57, 779–790 (2014).
	17.	 Chen, H. et al. Nutrient concentrations and fluxes in the Changjiang Estuary during summer. Acta Oceanol. Sin. 29, 107–119 (2010).
	18.	 Chen, Y. et al. Sources, behaviors and degradation of dissolved organic matter in the East China Sea. J. Mar. Syst. 155, 84–97 (2016).
	19.	 Gao, L. et al. Nutrient dynamics across the river-sea interface in the Changjiang (Yangtze River) estuary-East China Sea region. 

Limnol. Oceanogr. 60, 2207–2221 (2015).
	20.	 Jiang, Z. et al. Controlling factors of summer phytoplankton community in the Changjiang (Yangtze River) Estuary and adjacent 

East China Sea shelf. Cont. Shelf Res. 101, 71–84 (2015).
	21.	 Chang, P. H. & Isobe, A. A numerical study on the Changjiang diluted water in the Yellow and East China Seas. J. Geophys. Res. 108, 

3299 (2003).
	22.	 Senjyu, T., Enomoto, H., Matsuno, T. & Matsui, S. Interannual salinity variations in the Tsushima Strait and its relation to the 

Changjiang discharge. J. Oceanogr. 62, 681–692 (2006).
	23.	 Grasshoff, K., Kremling, K. & Ehrhardt, M. Methods of seawater analysis. 3rd Edition. 159–228 (WILEY-VCH, 1999).
	24.	 Lee, H. et al. Tracing the flow rate and mixing ratio of the Changjiang diluted water in the northwestern Pacific marginal seas using 

radium isotopes. Geophys. Res. Lett. 41, 4637–4645 (2014).
	25.	 Beardsley, R., Limeburner, R., Yu, H. & Cannon, G. A. Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont. 

Shelf Res. 4, 57–76 (1985).
	26.	 Liu, S. M. et al. Nutrient budgets for large Chinese estuaries. Biogeosciences 6, 2245–2263 (2009).
	27.	 Liu, S. M. et al. Nutrient dynamics from the Changjiang (Yangtze River) estuary to the East China Sea. J. Mar. Syst. 154, 15–27 

(2016).
	28.	 Shen, Z. L. & Liu, Q. Nutrients in the Changjiang River. Environ. Monit. Assess. 153, 27–44 (2009).
	29.	 Zhang, J. Biogeochemistry of Chinese estuarine and coastal waters: nutrients, trace metals and biomarkers. Reg. Envir. Chang. 3, 

65–76 (2002).



www.nature.com/scientificreports/

7SCIENtIFIC Reports |  (2018) 8:12768  | DOI:10.1038/s41598-018-31105-1

	30.	 Moran, M., Sheldon, W. & Sheldon, J. Biodegradation of riverine dissolved organic carbon in five estuaries of the Southeastern 
United States. Estuaries 22, 55–64 (1999).

	31.	 Raymond, P. & Bauer, J. Bacterial consumption of DOC during transport through a temperate estuary. Aquat. Microb. Ecol. 22, 1–12 
(2000).

	32.	 Bronk, D. A. & Ward, B. B. Inorganic and organic nitrogen cycling in the Southern California Bight. Deep-Sea Res. I 52, 2285–2300 
(2005).

	33.	 Raimbault, R. & Garcia, N. Evidence for efficient regenerated production and dinitrogen fixation in nitrogen-deficient waters of the 
South Pacific Ocean: impact on new and export production estimates. Biogeosciences 5, 323–338 (2008).

	34.	 Varela, M. M. et al. Microplanktonic regeneration of ammonium and dissolved organic nitrogen in the upwelling area of the NW of 
Spain: relationships with dissolved organic carbon production and phytoplankton size structure. J. Plankton Res. 25, 719–736 (2003).

	35.	 Hung, J. J., Chen, C. H., Gong, G. C., Sheu, D. D. & Shiah, F. K. Distributions, stoichiometric patterns and cross-shelf exports of 
dissolved organic matter in the East China Sea. Deep-Sea Res. II 50, 1127–1145 (2003).

	36.	 Abell, J., Emerson, S. & Renaud, P. Distributions of TOP, TON and TOC in the North Pacific subtropical gyre: Implications for 
nutrient supply in the surface ocean and remineralization in the upper thermocline. J. Mar. Res. 58, 203–222 (2000).

	37.	 Raimbault, P., Garcia, N. & Cerutti, F. Distribution of inorganic and organic nutrients in the South Pacific Ocean - evidence for long-
term accumulation of organic matter in nitrogen-depleted waters. Biogeosciences 5, 281–298 (2008).

	38.	 Roussenov, V., Williams, R. G., Mahaffey, C. & Wolff, G. A. Does the transport of dissolved organic nutrients affect export 
production in the Atlantic Ocean? Glob. Biogeochem. Cycle. 20, GB3002 (2006).

	39.	 Antia, N. J., Harrison, P. J. & Oliveira, L. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. 
Phycologia 30, 1–89 (1991).

	40.	 Wang, Z. H., Ling, Y. & Kang, W. Utilization of dissolved organic phosphorus by different groups of phytoplankton taxa. Harmful 
Algae 12, 113–118 (2011).

	41.	 Peers, G. S., Milligan, A. J. & Harrison, P. J. Assay optimization and regulation of urease activity in two marine diatoms. J. Phycol. 36, 
523–528 (2000).

Acknowledgements
We thank the Environmental & Marine Biogeochemistry Laboratory (EMBL) members for their help with 
laboratory analyses. We also thank the captains and the crew members of R/V Tamgu-3 and R/V Tamgu-8 of the 
National Institute of Fisheries Science (NIFS), and R/V Ara of the Jeju National University for helping with the 
samplings. This study was funded by the NIFS, Korea (R2018043), the project titled “Deep Water Circulation and 
Material Cycling in the East Sea (2016)” funded by the Ministry of Oceans and Fisheries, Korea, and the National 
Research Foundation (NRF) funded by the Korean government (NRF-2018R1A2B3001147).

Author Contributions
G.K. conceived and designed this study. G.K. and H.-K.K. analyzed the data and wrote the manuscript. J.H. 
contributed to the interpretation of the analysis results. W.-A.L., J.-W.P. and T.-H.K. performed sampling and 
nutrient analyses. All authors discussed the results and commented on the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-31105-1.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-31105-1
http://creativecommons.org/licenses/by/4.0/

	Significant and conservative long-range transport of dissolved organic nutrients in the Changjiang diluted water

	Materials and Methods

	Study region. 
	Sampling and analyses. 

	Results and Discussion

	Distributions of salinity and dissolved nutrients in the East China Sea. 
	Behaviors of dissolved nutrients during the long-range transport. 

	Conclusions

	Acknowledgements

	Figure 1 Map showing sampling stations and schematic patterns of surface currents in the northwestern Pacific marginal seas during the summer.
	Figure 2 Horizontal distributions of (a) DIN, (b) DIP, (c) DON, (d) DOP, (e) DIN:DIP ratio, and (f) DON:DOP ratio in surface waters of the East China Sea from August 22 to September 6, 2017.
	Figure 3 Distributions of (a) nitrogen (DIN and DON) and (b) phosphorus (DIP and DOP) in surface waters plotted against distance off the Changjiang estuary during the summer.
	Figure 4 Scatterplots of (a) DIN, (b) DON, (c) DIP, and (d) DOP versus salinities in surface waters of the Changjiang estuary and East China Sea.




