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We examined the flux and composition of sinking particles collected at a water

depth of 800 m in the northwest Pacific from November 2017 to August 2018 to

assess the impact of dust deposition on organic carbon export. The fluxes of total

particulate matter and particulate organic carbon averaged over the study period

were 88 ± 63 mg m-2 d-1 and 9.0 ± 5.8 mg m−2 d−1, respectively. Biogenic

particles accounted for 82% of the sinking particles, on average. There were two

notable pulses in the particle fluxes of both biogenic and lithogenic material in

February and May 2018. These flux peaks were decoupled from net primary

production in the surface waters but coincided with intervals of high rates of

atmospheric dust deposition. The biogenic component of the two peaks was

dominated by two different phytoplankton communities, which may have

influenced carbon export efficiency. Correlations between the sinking particle

flux and the lithogenic flux are found at several locations in the northwest Pacific,

implying that East Asian dust deposition has a prevalent influence on the

biological pump. Attention should be paid to the effects of changes in the

continental dust supply to the oceans on oceanic carbon export.
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fmars.2023.1180480/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1180480/full
https://www.frontiersin.org/articles/10.3389/fmars.2023.1180480/full
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2023.1180480&domain=pdf&date_stamp=2023-09-19
mailto:jeomshik@snu.ac.kr
https://doi.org/10.3389/fmars.2023.1180480
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/marine-science#editorial-board
https://www.frontiersin.org/marine-science#editorial-board
https://doi.org/10.3389/fmars.2023.1180480
https://www.frontiersin.org/journals/marine-science


Kim et al. 10.3389/fmars.2023.1180480
1 Introduction

The ocean mainly sequesters atmospheric CO2 via the biological

pump (Sabine et al., 2004; Buesseler et al., 2020; Omand et al., 2020).

The North Pacific subtropical/subarctic boundary region

(30°N−40°N) accounts for ~25% of the annual oceanic sink of

atmospheric CO2 (Takahashi et al., 2002; Takahashi et al., 2009;

Ayers and Lozier, 2012). However, CO2 absorption in this region

fluctuates seasonally, with the region being a strong sink in winter–

spring and a weak source in summer (Takahashi et al., 2009; Ayers

and Lozier, 2012). The seasonal exchange of CO2 with the

atmosphere is mainly related to seawater temperature and

primary production (PP), which are controlled by mixing of the

surface waters with the cold, nutrient-rich subsurface waters

(Takahashi et al., 1993; Ayers and Lozier, 2012).

Atmospheric dust deposition and its effects on carbon

sequestration via changes in PP has long been suggested as one of

the controlling factors in glacial–interglacial fluctuations (Martin,

1990; Tegen et al., 1996; Mahowald, 2011). Particularly in the

oligotrophic North Pacific Subtropical Gyre (NPSG), atmospheric

dust deposition can be a significant source of nutrients such as

nitrogen (N) and iron (Fe) to the surface ocean, thus affecting

phytoplankton growth rate (Tan et al., 2013; Yoon et al., 2019;

Zhang et al., 2020). Yoon et al. (2019) suggested that East Asian

Dust (EAD) events that occur in spring enhance the PP by up to

50% in the northwest Pacific, compared with background

conditions. Studies examining particle fluxes in the northwest

Pacific have found high biogenic particle fluxes during EAD

deposition events and suggested that the enhanced nutrient

supply by EAD could have stimulated PP (Li et al., 2004). Bishop

et al. (2002) found that suspended particulate organic carbon (POC)

concentration doubled after the passage of a dust cloud using data

from Argo-type floats deployed near Station PAPA in the North

Pacific. In addition, aeolian dust particles can be incorporated into

biogenic particles in the water column where they act as ballast

minerals, potentially increasing the settling velocity and enhancing

the efficiency of carbon export (i.e., transport of carbon from surface

water to the interior) (Ittekkot and Haake, 1990; Klaas and Archer,

2002; Pabortsava et al., 2017). Kim et al. (2021) assessed the role of

atmospheric dust deposition on the biological pump in the NPSG

based on observations of particle fluxes, satellite-derived net

primary production (NPP), and atmospheric dust deposition.

They reported doubling of the efficiency of the biological pump

during the atmospheric dust deposition events (Kim et al., 2021).

Despite the fact that EAD from the East Asian continent is

widely known to affect PP and export carbon flux in the northwest

Pacific (e.g., Uematsu et al., 2003; Kim et al., 2021), its impact on

plankton communities is poorly understood. The northwest Pacific

is a suitable place to study the influence of EAD deposition because

of its proximity to the source. In this study, we examined the flux

and composition of sinking particles collected by a time-series

sediment trap in the northwest Pacific between November 2017

and August 2018. Specifically, we investigated changes in

phytoplankton communities and POC export efficiency in

relation to atmospheric dust deposition.
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2 Methods

2.1 Collection of sinking particles by
sediment trap deployment

The Korea Institute of Ocean Science and Technology (KIOST)

occupied a monitoring station (KE08: 33°41.8′N, 156°39.7′E, water
depth = 5,330 m) to investigate carbon export processes in the

northwest Pacific (Figure 1). A time-series sediment trap (McLane

PARFLUX Mark 78H-21) was deployed at a water depth of 800 m

from November 2017 to August 2018, and a current meter

(Aanderaa SeaGuard RCM DW) was deployed at 835 m water

depth (35 m below the sediment trap). Sinking particles were

collected at 10-day intervals from February to June 2018 and at

monthly intervals over the remaining time (Table 1). Sample bottles

were filled with filtered seawater collected from the trap deployment

depth at the same site and a sodium-borate-buffered, 5% formalin

solution was added as a preservative. Upon recovery, samples were

stored in a refrigerator at 2−4°C.
2.2 Geochemical analysis

Geochemical analyses of samples were performed within a

month after sample recovery. In the laboratory, swimmers larger

than ~1 mm were hand-picked from the samples upon inspection

with the naked eye. Samples were split into five equal aliquots using

a wet sample divider (WSD-10, McLane Research Labs, USA).

Three aliquots of each sample were combined and rinsed with

Milli-Q water to remove salts and residual formalin solution. The

washed samples were freeze-dried and weighed for total particle flux

(TPF). All freeze-dried samples except for one in early June were

ground with an agate mortar and pestle for further analysis. The

total carbon (TC) contents of each sample were determined using a

Flash EA1112 NC analyzer (Thermo Electron Corporation, USA)
FIGURE 1

Map showing the location of Station KE08 in the northwest Pacific.
Color shading shows the flux of atmospheric dust deposition to the
ocean in mg m−2 yr−1, averaged over the 2011–2021 period. Data
are from the Modern-Era Retrospective analysis for Research and
Applications, version 2 (MERRA -2; http://giovanni.gsfc.nasa.gov/
giovanni/). The locations of other sediment trap study sites are
also indicated.
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with an uncertainty smaller than 1% relative standard deviation

(RSD), based on repeat analyses of standard material

(sulfanilamide, CE Instruments). Total inorganic carbon (TIC)

contents were measured using a UIC CO2 coulometer (CM5014,

UIC Inc., USA) with an uncertainty of <0.2% RSD, based on repeat

measurements of standard material (Calcium carbonate, Sigma-

Aldrich). Calcium carbonate (CaCO3) contents were calculated by

multiplying the TIC contents by 8.33 (Trapote et al., 2018). POC

contents were estimated as the difference between TC and TIC

contents. Biogenic silicon contents were measured via a sequential

extraction method using 0.5N NaOH solution at 85°C (DeMaster,

1981; Kim et al., 2011). The precision of the silicon analyses

was <4% (standard deviation), based on duplicate analyses.

Biogenic opal contents were calculated by multiplying biogenic

silicon contents by 2.4 (Lee et al., 2003).

For the analysis of metals, ~50 mg of each dried sample was

dissolved in a 4:4:1 mixture of HF, HNO3, and HClO4 and then

further diluted with 2% HNO3 (German et al., 2002). The Al and Fe

concentrations were determined by inductively coupled plasma–

mass spectrometry (ICP–MS; ICAP Q, Thermo Fischer Scientific).

A marine sediment standard (MESS4, National Research Council of
Frontiers in Marine Science 03
Canada) was used as the certified reference material. The analytical

recoveries obtained via multiple analyses (n = 5) of the certified

reference material were 98% and 95% for Fe and Al, respectively.
2.3 Satellite and model data

The net primary production (NPP) was obtained from the

Ocean Productivity website (http://sites.science.oregonstate.edu/

ocean.productivity), which estimates the NPP using the vertically

generalized production model (VGPM) with an 8-day temporal

resolution. The VGPM is a widely used depth-integrated model that

estimates regional to global ocean NPP based on surface

chlorophyll-a concentrations, sea surface temperature (SST), and

photosynthetically active radiation (Behrenfeld and Falkowski,

1997). The median NPP value in the 4° × 4° grid box that

included the study site was used for comparison with the particle

flux data. This resolution was chosen to obtain more consistent

results by avoiding patchiness of the data. However, the 2° × 2° data

were virtually identical to the 4° × 4° data in terms of both

magnitude and temporal variations (Figure S1). We compared
TABLE 1 Particle flux data from Station KE08 between November 2017 and August 2018.

Open date
(mm/dd/yy)

Sampling
interval
(days)

TPF POC
flux

CaCO3

flux
Biogenic
opal flux

Al
flux

Fe
flux

Coccolith
flux

Silicoflagellate
flux

Diatom
flux

mg m−2 d−1 ×108 m−2

d−1
×106 m−2d−1

11/04/17 27 75.4 5.61 36.2 14.3 0.33 0.19 1.86 0.25 1.28

12/01/17 31 48.4 4.06 22.5 8.70 0.23 0.13 6.16 0.15 1.21

01/01/18 31 61.2 3.67 39.8 4.18 0.30 0.17 30.08 0.45 1.18

02/01/18 10 225 20.8 119 25.5 1.53 0.86 67.40 1.89 4.79

02/11/18 10 95.6 9.66 42.9 13.2 1.05 0.60 18.57 0.49 1.57

02/21/18 8 126 14.9 55.3 15.5 1.28 0.77 51.56 0.65 1.54

03/01/18 10 57.8 8.18 23.5 7.79 0.48 0.30 35.28 0.42 1.14

03/11/18 10 66.3 10.7 23.4 11.3 0.37 0.26 26.15 0.27 1.49

03/21/18 11 82.4 10.9 25.5 14.9 0.61 0.34 6.30 0.04 10.38

04/01/18 10 77.4 9.70 32.8 12.2 0.62 0.36 22.78 0.39 3.47

04/11/18 10 124 11.7 51.9 16.8 1.08 0.61 18.62 0.17 2.66

04/21/18 10 81.9 6.81 44.0 no data 0.59 0.39 10.26 0.31 0.93

05/01/18 10 46.5 2.53 32.1 no data 0.39 0.23 0.31 0.04 0.38

05/11/18 10 248 22.2 87.9 49.2 1.45 0.81 29.11 0.15 11.09

05/21/18 11 168 13.6 57.4 37.3 0.94 0.51 36.93 0.36 9.57

06/01/18 10 0.50 no data no data no data no
data

no
data

no data no data no data

06/11/18 10 48.2 5.10 15.7 20.2 0.26 0.22 0.09 0.07 0.95

06/21/18 10 58.3 4.89 28.6 32.5 0.33 0.23 0.08 0.06 1.10

07/01/18 31 17.7 1.56 7.08 3.93 0.11 0.07 0.22 0.03 0.59

08/01/18 31 52.2 5.21 21.0 9.81 0.30 0.16 1.05 0.47 2.59
fr
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three commonly used satellite-based NPP estimates (i.e., VGPM,

Eppley, and CbPM), each having limitations in the estimation

process (Pennington et al., 2006; Friedrich and Oschlies, 2009).

The estimates were all comparable in a qualitative sense, as shown

by previous studies (e.g., Gomez-Letona et al., 2017), and using

other estimates than the VGPM result would not change the story.

SST data were obtained from the National Oceanic and

Atmospheric Administration (NOAA) optimum interpolation

SST product (https://downloads.psl .noaa.gov/Datasets/

noaa.oisst.v2.highres/; Reynolds et al., 2002), with monthly and 8-

day mean SST fields generated using in situ temperature data and

satellite-derived SST. We used the 1° × 1° SST data around the study

site. The mixed layer depth (MLD) was obtained from the National

Centers for Environmental Prediction Global Ocean Data

Assimilation System (GODAS; MLD data can be found at https://

downloads.psl.noaa.gov/Datasets/godas/), which has a 1° × 1°

spatial resolution (Behringer and Xue, 2004).

The hourly dry and wet dust deposition flux data around

Station KE08 were obtained from the Modern-Era Retrospective

analysis for Research and Applications, version 2 (MERRA-2;

https://disc.gsfc.nasa.gov/datasets?keywords=deposition&page=1),

which is developed and maintained by the NASA Goddard Earth

Sciences Data and Information Services Center (GES DISC) (Acker

and Leptoukh, 2007). We used the hourly dust deposition flux to

estimate the dust deposition flux averaged over each sediment trap

sampling period. The backward trajectory used to show the dust

transport pathways was obtained from the HYSPLIT model,

which was developed by NOAA (US National Oceanic and

Atmospheric Administration/Air Resources Laboratories; https://

www.ready.noaa.gov).
2.4 Phytoplankton analysis

One aliquot of each sample was used to count diatom and

silicoflagellate frustules to determine their fluxes. The samples were

rinsed with Milli-Q water to remove preservatives and seawater.

Organic material in the samples was removed following the

methods of Simonsen (1974). Equal amounts of saturated

potassium permanganate and 33% hydrochloric acid were added

and boiled at 80°C until the sample color disappeared. The samples

were then rinsed with Milli-Q water to remove acids. Slides for

qualitative and quantitative analyses were prepared by settling the

acid-cleaned material onto coverslips using a random settling

method (Moore, 1973). The coverslips were affixed with a mount

media (Pleurax, Wako, Japan), and three permanent slides per

sample were used for diatom analysis. A standard enumeration

methodology was employed, wherein a minimum of 500 frustules

total were counted along random transects on the triplicate slides.

The resulting counts were converted to daily diatom flux, according

to Sancetta and Calvert (1988).

For the coccolith analysis, l/25 of each sample was filtered on

Mixed Cellulose Ester Membrane filters (0.45 mm pore width,

Advantec) under vacuum. The filters were dried at 55°C for >4

hours and kept dry in a desiccator with silica gel. Dried filters were

coated with platinum and analyzed using a scanning electron
Frontiers in Marine Science 04
microscope (S-4300, Hitachi, Japan). Coccolith flux was calculated

following the methods of Young et al. (1999). We estimated the

coccolith carbonate flux based on morphology, such as the average

length and mass of CaCO3 for coccoliths of individual species,

following the method of Young and Ziveri (2000).
3 Results

The satellite-derived SST data from the study site exhibit

seasonal variations, with the lowest value in March−April and the

highest value in June−July (Figure 2A). This is typical of this region

based on the monthly SST data between 2002 and 2019. The MLD

varied between 215 m in February and 12 m in July 2018

(Figure 2A), and NPP varied between 209 and 964 mg C m−2 d−1

(Figure 2B). NPP started to increase in January to a peak value in

April and then decreased to its lowest value in August 2018

(Figure 2B). The NPP values in March−May 2018 were nearly

three times higher than the mean value (380 ± 101 mg C m−2 d−1)

over the remaining time.

TPF values ranged between 0.5 and 248 mg m−2 d−1, with a

duration-weighted average of 88 ± 63 mg m−2 d−1 (Figure 2B). Two

prominent pulses in TPF were observed during the intervals 1–10

February and 11–31 May, 2018 (Figure 2B). With the exception of

these two particle flux pulses, temporal variations in TPF were

generally similar to those of NPP, both showing high values in April.

The contribution of each biogenic component to the sinking particle

flux was in the order of 45% ± 10% for CaCO3, 20% ± 12% for biogenic

opal and 19% ± 5% for particulate organic matter (POM) (Figures 2,

S2). POM content was calculated from POC content by multiplying a

weight ratio of 1.88 (Lam et al., 2011). POM contents ranged from

18.5% to 30.4%. POM flux varied between 2.9 and 41.7 mg m−2 d−1

(Figure 2). POC contents ranged from 5.4% to 16.2%, with a mean of

9.8% ± 2.7%. POC flux varied from 1.6 to 22.2 mg m−2 d−1, with a

duration-weighted average of 9.0 ± 5.8 mg m−2 d−1 (Figure 2C). The

biogenic opal flux ranged from 3.9 to 49.2mgm−2 d−1, with a duration-

weighted average of 17.4 ± 12.2 mg m−2 d−1 (Figure 2C). The CaCO3

flux ranged from 7.1 to 119 mg m−2 d−1, with a duration-weighted

average of 40.3 ± 26.4 mg m−2 d−1 (Figure 2C). Biogenic particle fluxes

followed the temporal variations in TPF (Figures 2B, C): TPF and

CaCO3 flux, POC flux, and biogenic opal flux were correlated, with R2

values of 0.87 (p < 0.0001), 0.89 (p < 0.0001), and 0.59 (p = 0.0003),

respectively. POC flux was significantly correlated with the flux of

CaCO3 (R2 = 0.72, p < 0.0001), opal (R2 = 0.44, p < 0.004), and

lithogenic material (R2 = 0.84, p < 0.0001).

Aluminium accounted for 0.44%−1.1% of the sinking particulate

matter, and Al flux ranged from 0.1 to 1.5mgm−2 d−1, with a duration-

weighted average of 0.7 ± 0.4 mg m−2 d−1 (Figure 2D). Iron made up

0.25%−0.63% of the total particulate matter, and Fe flux ranged from

0.1 to 0.9mgm−2 d−1, with a duration-weighted average of 0.4 ± 0.2 mg

m−2 d−1 (Figure 2D). The Fe flux was strongly correlated with the Al

flux (R2 = 0.99, n = 19; not shown). The Fe flux was also strongly

correlated with the flux of biogenic components (R2 = 0.84 with POC

flux, R2 = 0.75 with CaCO3 flux). The flux of lithogenic material (Al ×

12.15; Honjo et al., 2000) ranged from 1.3 to 18.6 mg m−2 d−1, with a

duration-weighted average of 7.8 ± 5.4 mg m−2 d−1. The lithogenic
frontiersin.org
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material content ranged from 5% to 13%. During February 2018,

lithogenic material contents showed a notable increase from 6% to

13.4%. Similarly, high lithogenic contents were observed in late April

−early May, 2018 (Figure S2). The mean lithogenic content during

February and late April−early May was 10% ± 2.3%.

Coccolith flux was low in November (1.9 × 108 coccoliths m−2 d−1)

and increased with time to high values in early and late February. The

maximum coccolith flux observed in early February was 67 × 108
Frontiers in Marine Science 05
coccoliths m−2 d−1 (Figure 3A), and the flux gradually decreased until

the end of March. Another peak occurred in May, and the flux was

minimal in July−August. The dominant coccolithophore species was

Emiliania huxleyi (E. huxleyi), and its flux varied in accordance with

that of coccoliths, with the E. huxleyi flux ranging from 0.07 to 64 × 108

coccoliths m−2 d−1. The CaCO3 flux was strongly correlated with that of

coccolith flux (R2 = 0.57, p < 0.001). The estimated coccolith-derived

CaCO3 flux ranged from 0.03 to 27.7 mg m−2 d−1, with a duration-
B

C

D

E

A

FIGURE 2

Temporal variations in (A) mixed layer depth (MLD) and sea surface temperature (SST), (B) net primary production (NPP) and total particle flux,
(C) fluxes of POM, CaCO3, and opal, (D) fluxes of Al and Fe, and (E) daily-averaged current speed measured at 35 m below the sediment trap and in
tilt recorded by sediment trap, all observed at Station KE08 from November 2017 to August 2018. Note that bars in (C, D) are stacked.
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weighted average of 10.1 ± 9.2 mg m−2 d−1 (Figure 3A), thus

accounting for ~25% of the CaCO3 flux.

The flux of silicoflagellates varied from 0.03 to 0.7 × 106 cells

m−2 d−1, except for the exceptionally high value in February (1.9 ×

106 cells m−2 d−1; Figure 3B). The silicoflagellate flux was lowest in

June and July. The diatom flux ranged from 0.3 to 4.8 × 106 cells

m−2 d−1, when the high values in March (10.4 × 106 cells m−2 d−1)

and May (11.1 × 106 cells m−2 d−1) are excluded (Figure 3C). On

average, the diatom flux was nearly one order of magnitude higher

than the silicoflagellate flux in terms of cell numbers. The diatom

flux peaked in late March and mid- to late-May, unlike the fluxes of

coccolithophores and silicoflagellates (Figure 3C), and ~54% of the

annual diatom flux occurred during these periods. The biogenic
Frontiers in Marine Science 06
opal flux was significantly correlated with the diatom flux (R2 =

0.44, p < 0.005; R2 = 0.67 when the abnormally high value in late

March was excluded), and the diatom flux was less well correlated

with the silicoflagellate flux (R2 = 0.01).
4 Discussion

4.1 Characteristics of particle flux
and composition

During the study period, satellite-derived NPP values were

highest in spring and lowest in summer, which is typical for mid-
B

C

A

FIGURE 3

Fluxes of (A) coccoliths, CaCO3, and coccolith-derived CaCO3, (B) silicoflagellates and biogenic opal, and (C) diatom and biogenic opal at Station
KE08 from November 2017 to August 2018.
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latitude, temperate oceans (e.g., Kuwahara et al., 2015; Honda

et al., 2018). The satellite-derived NPP values were in a similar

range to the 13C-based field NPP measurements at Station S1

(30°N and 145°E) in the northwest Pacific (~900 mg C m−2 d−1 in

February and ~250 mg C m−2 d−1 in July 2011; Matsumoto et al.,

2016; Honda, 2020). Assuming that the settling velocity of

particles in the water column was 100−200 m d−1 (e.g., Honjo

et al., 1995; Berelson, 2002; Brust et al., 2011), the observed

temporal variations in particle flux should reflect temporal

variations in biological productivity in the surface layer

without a significant time lag (i.e., one sampling period, at
Frontiers in Marine Science 07
most). The TPF time series generally reflected the temporal

variations in NPP if the pulses in particle flux in February and

May were excluded (R2 = 0.58, p < 0.005): biogenic particle fluxes

were at their maximum in April, coinciding with high values in

NPP. On average, only ~1% of NPP reaches 800 m depth as

sinking POC, excluding the two periods of peak particle

flux (Figure 4).

There are two prominent particle flux peaks in our records:

one in February, which lasted for one sampling period (i.e., 10

days), and the other in May, which encompassed two sampling

periods (i.e., 20 days). The biogenic component (sum of CaCO3,
B

C

A

FIGURE 4

Temporal variations in (A) daily dry and wet deposition based on MERRA-2, (B) MERRA-2 model derived regional mean atmospheric dust deposition
flux for the study area and lithogenic material flux at depth from trap, and (C) the ratio of the POC flux at 800 m depth to satellite-derived NPP.
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biogenic opal, and organic matter) of the samples corresponding

to these peaks accounted for 70%–90% of the sinking particulate

mass, indicating a mostly biogenic origin. However, these particle

flux peaks appear to be decoupled from NPP in that they occurred

before and after the spring bloom signal in the NPP records.

Over the monitoring period, the current speed measured at

835 m was 9.1 ± 3.7 cm sec−1 (n = 280), which is below the critical

value (12.5 cm sec-1) for affecting sediment trap efficiency

(Figure 2E) (Baker et al., 1988; Honjo et al., 1995; Buesseler

et al., 2007). The tilt sensor of the sediment trap indicated

tilting between 0.6 and 6.0 degrees (2.5° ± 1.3° on average, n =

260) for the entire period. The tilt was small in the first third of

February, the last third of May, and June 2018, coinciding with the

major current direction change (Figure 2E). Although the particle

flux peak in February coincided with the low current speed and

tilt, the particle flux peak in May started mid-May and anteceded

the low tilt in late-May. The correlation coefficient for the

relationship between the particle flux and each of the current

speed and trap tilt was very low (R2 = 0.14 for the former and 0.0

for the latter; Figure S3). In addition, the observed high particle

fluxes at low tilt are the opposite of what Gardner (1985) observed:

trap efficiency increased with tilt, although the experiment was

done with a cylindrical trap instead of a conical trap. Thus, the

possibility of sampling bias associated with the current speed and

sediment trap tilt was likely low. However, Bishop et al. (2016)

found an underestimation of particle flux by moored traps

compared with an imaging optical sedimentation recorder

attached to an autonomous Lagrangian Carbon Flux Explorer

near the California coast. We are not certain at this point whether

all samples except for the two particle flux peaks were affected by

under-sampling. Another possibility is the lateral transport of

particles from more productive northern region during the

particle settling (Figure S5). However, the meridional gradient

in chlorophyll was small in February. Thus, any single one of these

potential factors alone cannot explain the particle flux peaks.

The peak particle fluxes in February and May 2018 (225 and 208

mg m−2 d−1, respectively) are nearly four times the average particle

flux for the remainder of the study interval (64 ± 32 mg m−2 d−1).

The particle compositions of the samples corresponding to the two

pulse periods were different. The February peak was accompanied

by a larger increase in CaCO3 flux compared with that of biogenic

opal (Figures 3A, S6). It was also associated with a sharp increase in

silicoflagellate flux, whereas diatom flux only doubled. In contrast,

the May peak was associated with a sharper increase in biogenic

opal flux than in the CaCO3 flux. Further, the diatom flux,

dominated by N. bicapitata, increased markedly, whereas the

silicoflagellate flux remained low, suggesting that the enhanced

biogenic opal flux in May was caused mainly by diatom

productivity (Figures 3C, S6).
4.2 Decoupling between NPP and particle
flux pulses

The high particle fluxes seen in February and May 2018 did not

correspond to peaks in satellite-derived NPP records. The study
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region is in the Kuroshio extension and thus is affected by the

meandering of the Kuroshio and/or mesoscale eddies (e.g.,

Matsumoto et al., 2021). We examined mesoscale eddy activity

from February and May 2018 based on the satellite-derived SST and

chlorophyll fields (both 0.25 degree resolution). No notable features

such as sudden inclusion into an eddy were observed during the

period at our monitoring station (Figures S4, S5).

We consider three possible explanations for this decoupling

between NPP and the two peaks in particle flux. One possibility is

that the satellite observations did not effectively capture the

subsurface phytoplankton production in February (e.g., Churnside

and Marchbanks, 2015; Honda et al., 2018). The MLD became the

greatest in February and thus supply of nutrients from the

subsurface water may have been responsible at least partly for the

POC flux peak. However, the satellite-derived NPP increased from

March 2018. It is possible that a considerable increase in NPP

actually occurred in February but was not captured by satellite

observation. It is well-known that there is a prominent subsurface

chlorophyll maximum (SCM) in the northwest Pacific (Furuya and

Marumo, 1983). The enhanced CaCO3 flux in February 2018 was

attributed to an increase in the flux of coccolithophores (e.g., E.

huxleyi). Coccolithophores have relatively low chlorophyll-a

contents and a whitish color and may not be represented

properly by satellite-detected chlorophyll concentrations (Hopkins

et al., 2015). Rapid grazing may be responsible for the low

chlorophyll concentration during the high flux period in

February. Bishop et al. (2016) observed high chlorophyll-a

concentration before its rapid decrease and high particle export

by grazing. In our study, any such increase in chlorophyll

concentration was not observed ahead of the particle flux peak in

February. However, the rapid increase in the coccolith flux in

February may suggest rapid grazing of coccolithophores. In May

2018, NPP was relatively high, and the biogenic opal flux was

supported mainly by N. bicapitata, which is small and less well-

detected by satellites (Figure S6) (Leblanc et al., 2018).

Another possible explanation involves enhanced particle export

efficiency by atmospheric dust deposition. The pulses in particle flux

seen in February and May 2018 coincided with higher

concentrations of lithogenic material and a higher lithogenic flux

than those in the remainder of the study interval (Figure 2).

Lithogenic material in the open ocean and especially in the upper

layer is mainly supplied through atmospheric dust deposition (e.g.,

Li et al., 2004; Martino et al., 2014; Pabortsava et al., 2017; Kim et al.,

2021). The Gobi Desert in East Asia represents one of the world’s

largest dust source regions (Lee et al., 2015; Kim et al., 2021). EAD is

transported to the North Pacific primarily in late winter and spring

(e.g., Li et al., 2004; Kanatani et al., 2014; Lee et al., 2015).

Atmospheric dust deposition flux data derived from the MERRA-

2 model showed high fluxes in February−May 2018 (Figure 4). The

wet deposition accounted for the dominant fraction (80-90%) of the

total dust deposition (Figure 4A). We found significant positive

relationships between the lithogenic material flux and the dust

deposition flux averaged over each trap sampling period (Figure

S7). The highest correlation coefficient was obtained when there was

no time lag. Although their temporal variations were correlated, the

magnitudes of the two fluxes were different (Figure 4). We do not
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know the cause of the discrepancy. A large uncertainty of the

MERRA-2 should be noted: Yu et al. (2019) reported that satellite-

based dust deposition estimates agreed with the in-situ based

climatology within a factor of 2. Also, the organic matter may

have scavenged suspended lithogenic particles to magnify the

lithogenic flux.

We also considered the lateral transport of lithogenic particles

from the continental margin sediments as a potential source. Lam

et al. (2006) reported the Ti : Fe ratio of ~0.1 for EAD, which is

different from that of the coastal particulate samples (~0.02) in the

upper 100 m layer of the northeastern subarctic Pacific. The Ti : Fe

ratio of the sinking particles at Station KE08 ranged between 0.1 and

0.2 (average = 0.15 ± 0.03, n=19), matching the value of EAD

(Figure S8). The Ti : Al ratio of the sinking particles was ~0.052 ±

0.01, similar to the values of soil in East Asia (0.05; Gu et al., 2020).

Also, Ti : Al ratio of the sediment in the western North Pacific is

comparable to those of EAD (Maeda et al., 2002). Thus, Ti : Al ratio

cannot be used as an unequivocal source indicator. Instead, these

results may support the notion that the discrepancy between the

EAD flux and lithogenic material flux was partly caused by the

addition of laterally transported sediment to sinking particles.

Studies have found links between dust deposition and intervals

of increased particle flux in the North Pacific (e.g., Bishop et al.,

2002; Li et al., 2004; Kim et al., 2021). At Station SHIBT (29°30′N,
135°15′E) in the northwest Pacific, Li et al. (2004) reported that the

particle flux exhibited distinct maxima in February and May 1999

and low values in July 1999, and they attributed the enhanced

particle flux to EAD deposition. We compared the magnitude of

dust deposition near Station PAPA for the year Bishop et al. (2002)

observed the effect of dust deposition, to that observed at our site.

The monthly MERRA-2 model-derived regional mean atmospheric

dust deposition at around Station PAPA in April 2001, when the

observation was carried out, was comparable in magnitude to those

at Station KE08 (Figure S9).

Because the highest correlation coefficient between the dust

deposition and the lithogenic flux was obtained with no time lag, we

examined the backward trajectory analysis for the intervals 2–5

February and 3–7 May 2018 based on the NOAA HYSPLIT model

(https://www.ready.noaa.gov). The results show that the dust

originated mainly from northern China and Mongolia (Figure

S10). We also examined the backward trajectory two weeks before

each particle flux peaks, i.e, for the intervals 15–23 January and 10

−23 April 2018, because a few studies found a 2-week time lag

between EAD deposition and particle flux at depths or increased

suspended POC concentration in the upper layer (Bishop et al.,

2002; Kim et al., 2021), These results similarly showed that the dust

particles originated from northern China and Mongolia (Figure

S11). We investigate the influence of atmospheric dust deposition

on POC export efficiency in the following section.
4.3 Role of dust deposition on sinking
particle flux

We examined the role of EAD deposition on POC export

efficiency to the sediment trap depth (i.e., biological pump
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efficiency) by comparing the POC flux at 800 m depth with NPP.

The export efficiency included both the POC export from the mixed

layer and transport to the sediment trap depth in this case. The

ratios of POC flux (at 800 m depth) to NPP during the two peak

intervals were 5.1% and 2.9%, compared with an average value of

1.2% ± 0.5% over the remainder of the study interval (Figure 4C).

POC export efficiency was highest in February 2018, when small

phytoplankton (e.g., coccolithophorids) were dominant. The EAD

particles may play a significant role by providing ballast minerals for

the aggregation and sinking of small particles of organic carbon.

Several studies have reported marked increases in biological

pump efficiency associated with EAD deposition events in the

NPSG (Buesseler et al., 2007; Kim et al., 2021). Dust particles

with high density (2.6−2.8 g cm−3) may act as ballasting minerals

(Armstrong et al., 2001; Pabortsava et al., 2017), and thus any

aggregates that incorporate dense dust particles may result in more

efficient POC transfer to the depth at our study site. Alternatively,

nutrient supply by dust deposition may shift the plankton

community toward more sinking-prone species, such as diatoms

with large frustules and planktonic foraminifera. Buesseler et al.

(2007) reported that at Station K2 in the northwest Pacific, a

diatom-dominated ecosystem led to enhanced transport efficiency

of POC through the twilight zone due to the formation of large and

dense phytoplankton aggregates. At a station in the southeastern

part of the NPSG, Kim et al. (2021) also found that EAD deposition

during the March−May period drove diatom blooms and increased

POC export efficiency to the deep sea. They reported that the ratio

of the POC flux at 4,500 m depth to NPP during the interval of

enhanced dust deposition was twice the background value (Kim

et al., 2021).

We compared fluxes of POC and lithogenic material at several

sites in the northwest Pacific between the western subarctic and

subtropical Pacific (30°N−50°N, 140°E−180°E; Table 2).

Specifically, we examined fluxes at stations WCT2 and WCT7

(Mohiuddin et al., 2004), S1 (Honda et al., 2016), 5A (Otosaka and

Noriki, 2005), KNOT (Honda et al., 2002), K2 (Honda et al., 2002;

Buesseler et al., 2007), 40N, and 50N (Honda et al., 2002). Similar

to the decreasing trend seen in EAD deposition with distance from

the source region (Duce and Tindale, 1991; Jickells et al., 2005;

Hsu et al., 2009), the flux of lithogenic material also decreased with

the distance between the dust source region and each site

(Figure 5). The distance was calculated using a point source in

the Gobi Desert of East Asia and measuring the distance to each

sediment trap site in the northwest Pacific using the Google Earth

program (e.g., Zhang et al., 2003; Hsu et al., 2009). We also found

that annual mean POC flux decreased with distance from the

source region (Figure 5). However, the relationship is not linear,

with either the Station S1 value being too high or the Station

WCT2 value being too low. There is a possibility that this

relationship is either secondary or fortuitous, considering that

NPP is usually higher near the continent than in the gyre because

of the nutrient supply from the continent. It is also possible that

the relation may be attributed to usually higher concentration of

laterally transported lithogenic material in the water column

closer to the continent. However, the fact that a relationship is

found between the fluxes of POC and lithogenic material at several
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TABLE 2 Annual fluxes of lithogenic material and POC at various sediment trap sites in the northwest Pacific.

Station Water depth
(m)

(trap depth)

Distance from the Gobi desert
(km)

Lithogenic
flux

(g m−2 yr−1)

POC flux
(g m−2 yr-1)

References

WCT2 5,356 (1,371) 3,542 11.58 2.63 Mohiuddin et al. (2002)

S1 5,900 (200) 3,832 7.30 15.4 Honda et al. (2016)

5A 5,310 (1,230) 3,984 3.49 4.99 Otosaka and Noriki (2005)

KNOT 5,375 (924) 3,998 2.88 3.32 Honda et al. (2002)

WCT7 5,578 (1,191) 4,280 5.22 2.92 Mohiuddin et al. (2004)

K2 5,280 (200) 4,305 5.29 7.67 Buesseler et al. (2007); Honda
(2020)

KE08 5,330 (800) 4,561 2.86 3.30 This study

50N 5,546 (1,227) 4,579 1.55 1.68 Honda et al. (2002)

40N 5,476 (953) 1,925 1.11 1.79 Honda et al. (2002)
F
rontiers in M
arine Science
 10
B

A

FIGURE 5

Variations in (A) lithogenic flux and (B) POC flux versus the distance between the dust source region (Gobi Desert; approximate location: 42°48′N
and 105°02′E) to various sediment trap sites in the downwind region of the northwest Pacific.
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open ocean sites (Figure 6) supports the idea that atmospheric

dust deposition affects POC flux, in addition to other physical

controls of NPP. The correlation between sinking POC flux and

lithogenic material flux at these sites implies that the link between

the two is prevalent across the northwest Pacific. However, the

possibility that this relation was caused by the tendency that

biogenic and lithogenic materials are aggregated and sink

together, still exists, and is open for further research to evaluate

the causation.
5 Implications and conclusions

We investigated particle fluxes to a depth of 800 m in the

northwest Pacific over a period of ~10 months and examined their

relationship with NPP and the dust deposition flux. We observed

strong coupling between EAD deposition and particle flux,

suggesting that dust deposition plays a role in enhancing carbon

export. Changes in the EAD flux will influence the efficiency of the

biological pump and therefore, in turn, oceanic CO2 uptake in the

northwest Pacific. However, considering that the enhanced POC

flux was accompanied by increased CaCO3 flux, i.e., the enhanced

counter pump (Salter et al., 2014), the role of EAD in atmospheric

CO2 uptake into the surface layer should be investigated more

carefully based on its influence on the plankton community and the

ratio of POC to CaCO3 in sinking particles. The springtime dust

aerosol emissions over East Asia and the North Pacific increased

during the interval 1999–2009, followed by a decreasing trend due
Frontiers in Marine Science 11
to increasing vegetation cover in the source regions (An et al., 2018;

Wu et al., 2022). The recent downturn in spring EAD events may

affect carbon export efficiency in the northwest Pacific. Thus, careful

and continuous examination of EAD deposition and particle fluxes

are necessary to understand the influence of dust deposition on

carbon export efficiency in the northwest Pacific.
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FIGURE 6

Cross plot of POC flux versus lithogenic material flux at five
sediment trap sites in the northwest Pacific. The results of linear
regression are provided for stations KE08 (this study), WCT7, and the
other three sites (40N, 50N, and KNOT). Data from stations 40N,
50N, and KNOT were taken from Honda et al. (2002) and the Japan
Agency for Marine-Earth Science and Technology (JAMSTEC) Ocean
site sediment trap data (http://jamstec.go.jp/k2oceansites). Particle
flux data from stations 40N, 50N, and KNOT were collected from
December 1997 to July 1998 (Honda et al., 2002). Data from Station
WCT7 were taken from Mohiuddin et al. (2004). Lithogenic material
flux data from Station WCT7 were estimated as the difference
between total particulate matter and the biogenic component.
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