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To identify the sources of organic matter, we examined nitrogen isotopes of the amino
acids of sinking particles collected from July 2017 to March 2018 at 1000 and 2250 m in
the Ulleung Basin, the southwestern part of the East Sea (Japan Sea). Compared to the
1000 m samples, sinking particles at 2250 m were found to contain more resuspended
sediment and underwent more microbial degradation. The signature of microbial
degradation was significant in winter-early spring than in late summer-autumn. The
source amino acids of sinking particles showed a substantial decline in the isotopic
ratio during winter at both depths, suggesting changes in the nitrogen source for primary
production. The average trophic positions (TPs) of sinking particles were larger at 1000 m
(2.3 ± 0.3) than at 2250 m (1.9 ± 0.2), indicating that organic matter was mainly derived
from fecal pellet and other organic debris from heterotrophs. In winter, the average TPs of
sinking particles at 1000 m decreased below 2.0, which probably reflects the minimum
zooplankton grazing in the euphotic layer. Sinking particles near the seafloor (2250 m)
showed lower TP values than those at 1000 m, demonstrating that sinking particles at
2250 m are affected by lateral transport, particularly during winter. Our results show that
the nitrogen isotope ratios of amino acids in sinking particles reflect the seasonal dynamics
of both nitrogen sources and trophic structure in the water column.

Keywords: amino acids, nitrogen isotopes, sinking particle, East Sea, Japan Sea
INTRODUCTION

The East Sea (also known as the Japan Sea; hereafter, the East Sea) is a semi-enclosed marginal sea
connected to the North Pacific Ocean and the Sea of Okhotsk. The Ulleung Basin (UB) is a highly
productive region, located to the southwest of the East Sea (Yamada et al., 2005; Yoo and Park, 2009; Joo
et al., 2014). According to Kwak et al. (2013), the annual primary production was 273 gC m-2 yr-1

(in situ) and was exported largely (53.9%) from the euphotic layer in the UB region. High productivity is
maintained even in summer because of the shallow surface mixed layer, allowing a more upward supply
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of nutrients (Kwak et al., 2013). Physicochemical conditions cause
seasonally varying phytoplankton community compositions (Choi
et al., 2013).

The East Sea experienced a decrease in primary productivity
from 2003 to 2012 (Joo et al., 2014). Increased surface seawater
temperature (Joo et al., 2014) may provide favorable conditions
for smaller phytoplankton (< 2 μm) occupying 23.6% of the total
annual primary productivity, which increases to 34.9% in
summer (Joo et al., 2017). The relative proportion of smaller
particles can influences the heterotrophic protozoan population
(Yang et al., 2009; Park et al., 2016a) and the extent of microbial
degradation of the sinking organic matter (Yamaguchi and
McCarthy, 2018). Such changes in the trophic structure of
planktonic ecosystems influence biological pump efficiency,
resulting in biogenic particles being mostly remineralized in
the upper water column (Onodera et al., 2015). Time-series
sediment traps have been deployed in the mesopelagic (1000 m)
and bathypelagic (2000–2300 m) layers of the East Sea to
understand spatial and temporal changes in biological pumps
(Kim et al., 2017b; Kim et al., 2020). Stable carbon and nitrogen
isotopes (Nakanishi and Minagawa, 2003; Kwak et al., 2017),
radiocarbon isotopes (Kim et al., 2020), and lipid biomarkers
(Park et al., 2019b; Gal et al., 2021) have been examined in
sinking particle samples to further understand the sources of
organic matter.

Sinking particles exported from the euphotic layer contain
mostly dead cells of phytoplankton and fecal pellets of
zooplankton. These components are utilized by detritivores
and bacteria (Busch et al., 2017; Gloeckler et al., 2018; Van Der
Jagt et al., 2020). The organic matter composition of sinking
particles is altered by microbial degradation during vertical
transit (Gupta and Kawahata, 2000). One way to assess the
degradation of sinking organic matter is to examine the
composition of amino acids (AAs), which represent labile
compounds in aquatic environments (Lee and Cronin, 1984).
The relative composition of AAs has been used as a diagenetic
indicator of the magnitude of microbial alteration of organic
matter (Dauwe et al., 1999; Ingalls et al., 2003; Nagel et al., 2016).
Recently, compound-specific isotope analysis of AAs (CSIA-
AAs) has been used to understand trophic dynamics in marine
ecology (McMahon and McCarthy, 2016; Ohkouchi et al., 2017).
Nitrogen isotope ratios of individual AAs (d15NAA) has helped
differentiate between trophic transfer and nitrogen baseline of
consumers in the food web as trophic and source AAs,
respectively (Chikaraishi et al., 2009; Bowes and Thorp, 2015).
The difference between trophic and source AAs could be
expressed as the trophic position (TP) of an organism
regardless of the nitrogen baseline fluctuation (Chikaraishi
et al., 2014). For non-living organic matter, TP values can be
used to assess the relative contributions of organic matter derived
from autotrophic and heterotrophic organisms (Batista et al.,
2014). The wide distribution of TP values in sinking particles
indicates various ratios of autotrophs and heterotrophs in
exported particles from euphotic layers (Shen et al., 2021).

The objective of this study was to examine the seasonal
variation in the trophic structure of the planktonic ecosystem
in the UB using the nitrogen isotope ratio of the AAs of sinking
Frontiers in Marine Science | www.frontiersin.org 2
particles. In addition, diagenetic indicators were estimated using
AA composition and d15NAA to assess the magnitude of
microbial degradation in sinking particles.
MATERIALS AND METHODS

Sample Collection
Sinking particle samples were collected using time-series
sediment traps (SMD26S-6000, Nichiyu Giken Kogyo Co. Ltd.,
Kawagoe, Japan) with a sampling interval of 14 days at depths of
1000 and 2250 m in the Ulleung Basin (37°21’ N, 131°23’ E; 2323
m water depth, Figure 1). Sample handling and splitting have
been described previously (Kim et al., 2017b). The sinking
particle samples were oven-dried and homogenized for further
experiments. The 8-days interval Chlorophyll-a data of MODIS
with 0.1 degrees resolution from 2017 to 2018 near the study site
(37°35’ N, 131°45’ E) was obtained from the NASA Earth
Observation website (http://neo.gsfc.nasa.gov). The 2-months
interval water temperature and salinity near the study site (37°
55’ N, 131°24’ E) from 2017 to 2018 were downloaded from the
National Institute of Fisheries Science website (nifs.go.kr).
Nitrate concentration data during 2017 (for 2 months interval)
near the study site (37°55’ N, 131°24’ E) was obtained from the
National Institute of Fisheries Science website (nifs.go.kr/kodc/soo_
list.kodc). Themonthly Nitrate concentration data during 2018 near
the study site (37°50’ N, 131°50’ E) was obtained from the World
Ocean Atlas (ncei.noaa.gov/products/world-ocean-atlas) (Garcia
et al., 2019).

Total Mass, Lithogenic, Particulate
Organic Carbon Fluxes, and Al Contents
Total mass flux of the sinking particles was determined
gravimetrically by weighing the samples dried at 45°C in an
oven. For organic carbon content measurement, ~10 mg of each
dried sample was weighed in a silver capsule and fumigated with
concentrated HCl vapor in a desiccator at room temperature for
20 hours to remove inorganic carbon (Hedges and Stern, 1984;
Komada et al., 2008; Kim et al., 2017b). Fumigated samples were
placed on a hot plate at 45°C for 4 hours to remove the remaining
acid and enclosed in tin capsules. Carbon content was measured
using an elemental analyzer (2400 Series II, PerkinElmer, US)
with the uncertainty of 0.2% RSD based on the duplicate sample
analysis. Al content of the sinking particle samples was analyzed
using inductively coupled plasma optical emission spectrometer
(ICP-OES, Optima 8300, PerkinElmer, US) at the Korea Basic
Science Institute (KBSI). For calibration, two standard materials
(SRM 1646a, and SRM 2702, NIST, US) were analyzed.
Lithogenic material content was estimated by multiplying the
content of Al by a factor of 12.15 (Taylor and McLennan, 1985).

Bulk Nitrogen Isotope Analysis
Total nitrogen contents and stable nitrogen isotope ratios were
measured using elemental analyzer (Vario Select, Elementar,
Germany) coupled with isotope ratio mass spectrometer
(VisION, Elementar, Germany). Approximately 5-8 mg of
powdered sinking particle samples were packed into tin
April 2022 | Volume 9 | Article 824479

http://neo.gsfc.nasa.gov
nifs.go.kr/kodc/soo_list.kodc
nifs.go.kr/kodc/soo_list.kodc
https://www.frontiersin.org/journals/marine-science
http://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Choi et al. Sinking Particle Trophic Dynamics
capsules. To check the precision of nitrogen isotope analysis, an
international standard with certified d15N values (IAEA N-1) was
measured every 10 runs of samples. During sample analysis,
analytical error of the standards was less than 0.3‰.

AA Derivatization, Quantification, and
Nitrogen Isotope Ratio Analysis
Approximately 100–200 mg of dry samples was hydrolyzed (6 M
HCl, 20 h, 110°C). The large particles were removed using
syringe filter (0.45 μm pore size) after cooling to room
temperature. Lipids were removed using 6:5 n-hexane/
dichloromethane (v/v). Residual HCl in the samples was
removed by blowing N2 gas at 70°C. Purification was
conducted using a cation exchange column (AG-50X W8, 200–
400 mm mesh, Bio-Rad), following Takano et al. (2010). AAs
were eluted with 10% NH4OH solution. Each sample was dried
with N2 gas and dissolved in methanol. AAs in the samples were
derivatized with 1:4 thionyl chloride/isopropanol (v/v) and 1:4
pivaloyl chloride/dichloromethane (v/v). AA derivatives were
extracted using 6:5 n-hexane/dichloromethane (v/v).

AAs were identified from the mass spectra and retention
times of standard mixtures of AA derivatives (alanine, glycine, b-
alanine, valine, leucine, isoleucine, norleucine, g-aminobutyric
acid, proline, aspartic acid, threonine, serine, methionine,
glutamic acid, phenylalanine, and lysine) using gas
chromatography coupled with mass spectrometry (GC/MS,
Shimadzu GC 2010, Japan). AA concentrations were analyzed
using a gas chromatograph equipped with a flame ionization
detector (GC/FID, Shimadzu GC 2010, Japan). An HP-ultra2
Frontiers in Marine Science | www.frontiersin.org 3
column (25 m length, 0.32 mm inner diameter, and 0.52 μm film
thickness) was used for both GC/MS and GC/FID instruments.
Helium was used as the carrier gas with a constant flow of 1.2 ml/
min. The initial oven temperature was 40°C, which was increased
at a rate of 15°C/min to 110°C, 3°C/min to 150°C, 6°C/min to
220°C (10 min), and finally 20°C/min to 250°C (8 min). We used
the calibration curve of AA derivatives of the standard mixture to
calculate AA concentrations. Calibration standards of 100%,
50%, 25%, 10%, 5%, and 2.5% were used, based on 3125 mM
AA homologues (R2 > 0.995 for all AAs).

The nitrogen isotope ratios of the individual AAs were
measured using a gas chromatograph (HP 6890N, Agilent
Technologies, US) connected to a furnace (GC5 Interface,
Elementar, Germany) and an isotope ratio mass spectrometer
(Isoprime 100, Elementar, Germany). An HP-ultra2 column (50
m length, 0.32 mm inner diameter, and 0.52 μm film thickness)
was used. Helium was used as the carrier gas with a constant flow
of 1.5 ml/min. We used the same oven program for GC/MS and
GC/FID analysis. A standard mixture of AA derivatives (alanine,
glycine, valine, leucine, norleucine, proline, aspartic acid,
methionine, glutamic acid, and phenylalanine) with certified
d15N values were measured every five runs of samples to check
instrumental precision and to calibrate raw d15N values with drift
correction (R2 > 0.995 between known and measured d15N
values). Samples were injected 2–3 times for the replicate
analysis. Some AAs, including aspartic acid and threonine,
were excluded because of poor peak separation and isotopic
reproducibility in the isotope analysis. The standard deviations
of the d15N values of the AA standards were lower than 1‰.
FIGURE 1 | Sampling site of this study.
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Data Processing
The Pearson correlation coefficients were determined by using
the data of sinking fluxes (total mass, lithogenic, POC, TN, and
THAA) and d15N values (bulk and THAA).

The degradation index (DI) was calculated using relative
molar abundance of AAs using the following equation (Dauwe
et al., 1999).

DI =  o vari − AVGið Þ
STDi

*factor   coefficienti

� �

where vari is molar % of AAi. We used AVGi, STDi, and factor
coefficienti from the reference dataset, including average,
standard deviation, and first axis of factor coefficient of AAi

from a previous study (Dauwe et al., 1999).
The d15N value of THAA (d15NTHAA) was calculated by

molar %-weighted average of individual d15NAA with following
equation (McCarthy et al., 2013).

d 15NTHAA =  o d 15NAA ∗  mol   %   of  AA
� �

Where d15NAA is the individual d15N value of AAs measured in
this study (Ala, Gly, Val, Leu, Ile, Pro, Glu, Phe). The mol % of
AA is the molar percentage of AA quantified using GC/FID.

TP was calculated using the following equation (Chikaraishi
et al., 2009).

TP =
d 15NGlu −   d 15NPhe −   b

TDF

� �
+ 1

where d15NGlu is average nitrogen isotope ratio of glutamic acid
and d15NPhe is the nitrogen isotope ratio of phenylalanine. The b
value is the difference in d15N between glutamic acid and
phenylalanine in primary producers. TDF is the trophic
enrichment factor of d15NGlu relative to d15NPhe in a trophic
transfer. In this study, 3.4‰ and 7.6‰ were used as the b and
TDF values, respectively (Chikaraishi et al., 2009). The
propagation of error in TP estimation was calculated by the
equation in Ohkouchi et al. (2017).

∑V value was calculated by the isotopic variance of trophic
AAs, using the following equation (McCarthy et al., 2007).

SV =  o d 15NAA −   d 15NTrophic  AA

�� ��
n

 !

Where d15NAA is the value of each trophic AA and d15Ntrophic AA

is the average nitrogen isotope ratio of the six trophic AAs (Ala,
Val, Leu, Ile, Pro, and Glu). n is the number of trophic AAs used
in the equation.
RESULTS

The seasonal variations of water temperature and salinity were
displayed in Figures 2A, B, respectively. In June 2017 and 2018,
relatively warm (> 20°C) and salty (> 34.5 psu) water mass (High
Salinity Tsushima Warm Water) was introduced in the study
site. From August to October, that water mass was placed below
Frontiers in Marine Science | www.frontiersin.org 4
the low salinity surface water, generating a strong halocline.
Surface water from late summer to early autumn showed
relatively lower salinity (< 34 psu) and was known as Low
Salinity Tsushima Warm Water, which originated from
Changjiang river discharge water (Park et al., 2016b). In
December, upper 100 m of water column was almost
homogenized in both years. Nitrate was mostly depleted in
surface water except during winter (Figure 2C). In January
2018, greater concentration of nitrate (> 30 μM) was observed
in 100 m water depth. MODIS-observed surface Chlorophyll-a
concentration was the highest (3.5 μg/m3) in April 2017
(Figure 2D). Double peaks of surface Chl-a concentrations in
March (1.7 mg/m3) and April (1.9 mg/m3) were observed
in 2018.

The total mass fluxes ranged between 118–339 mg m-2 d-1 at
1000 m and 150–494 mgm-2 d-1 at 2250 m (Figure 3A and Table
S1, S2). Clear monthly variations were observed in the total mass
fluxes at both depths. The total mass flux at 2250 m gradually
increased and was larger than that at 1000 m from October 2017.
Lithogenic fluxes ranged 14.3–85.1 mg m-2 d-1 at 1000 m and
45.7–144.2 mg m-2 d-1 at 2250 m (Figure 3A and Table S1). The
seasonal variations of lithogenic fluxes were similar to those of
total mass fluxes, showing significant correlation at 2250 m (R2 =
0.88, p = 0.000), rather than at 1000 m (R2 = 0.54, p = 0.027). The
POC fluxes were 5.9–28.3 mg m-2 d-1 at 1000 m and 10.3–26.6
mg m-2 d-1 at 2250 m. The POC flux at 1000 m was the largest in
October and gradually decreased until March 2018. However, at
2250 m, the POC flux was the largest in February and relatively
constant from autumn to winter. The contribution of POC to
total mass flux ranged between 8.3 ± 2.5% at 1000 m and 6.2 ±
1.0% at 2250 m (Figure 3B). The POC percentage was mostly
greater at 1000 m than at 2250 m. The POC percentage in sinking
particles was highest in August and declined from autumn.
However, at 2250 m, the decrease in the percentage of POC in
sinking particles was relatively weak since autumn.

Total nitrogen (TN) fluxes (Figure 4) were highly correlated
with total mass fluxes at 1000 m (R2 = 0.51, p = 0.036) and 2250
m (R2 = 0.80, p = 0.000). The TN values at 1000 m were
maximum from October to November 2017 and gradually
decreased during winter. On the other hand, TN values at
2250 m increased during the entire study periods and were
highest in February 2018. Total hydrolysable AA (THAA) fluxes
were 0.5–4.1 mg m-2 d-1 at 1000 m and 1.0–6.0 mg m-2 d-1 at
2250 m (Table S1 and S2), accounting for 3.5%–10.8% and 3.8%–
13.4% of POC fluxes at 1000 and 2250 m, respectively. THAA
fluxes showed a relatively weak correlation with total mass (R2 =
0.34, p = 0.185) as compared to POC fluxes (R2 = 0.75, p = 0.001)
at 1000 m. In contrast, THAA fluxes at 2250 m showed a more
significant correlation with both total mass (R2 = 0.56, p = 0.019)
and POC (R2 = 0.51, p = 0.035) fluxes. The THAA fluxes at 1000
m were mostly larger than those at 2250 m from August to
November 2017, whereas during winter, THAA fluxes at 2250 m
were twice than those at 1000 m. The THAA-N/TN percentages
at 2250 m were mostly greater than those at 1000 m, implying
THAA-N supply is not solely derived from sinking
flux (Figure 4).
April 2022 | Volume 9 | Article 824479
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The AA compositions varied between 1000 and 2250 m
(Figure 5 and Tables S3, S4). Among the AAs, the molar
percentages of two non-proteinaceous AAs (b-alanine (BALA)
and g-aminobutyric acid (GABA)) were significantly higher at
2250 m (4.3–7.1%) than at 1000 m (1.4–3.9%) (Figure 7A). At
1000 m, the molar percentages of BALA and GABA gradually
increased over time and were the largest (3.9%) in February.
However, they did not show any seasonal variation at 2250 m.
The DI values were mostly higher at 1000 m than at 2250 m
(Figure 7C). The DI values ranged from 0.6 to 1.8 at 1000 m and
from −0.8 to 0.3 at 2250 m. The DI values were relatively high in
Frontiers in Marine Science | www.frontiersin.org 5
November and March at 1000 m. Highest DI value at 2250 m was
observed in November.

Bulk d15N values of sinking particles (Figures 6A, B)
displayed wide range from -3.4–5.6‰ at 1000 m and from
-1.7–3.9‰ at 2250 m. Sinking particles at both depths showed
apparent d15N values decrease from January to March. Those
seasonal patterns of bulk d15N values showed clear correlation
with THAA d15N values at 1000 m (R2 = 0.75, p = 0.001), but not
with those at 2250 m (R2 = 0.25, p = 0.368). We grouped the
nitrogen isotope ratios of individual AAs into two categories:
trophic AAs (Ala, Val, Leu, Ile, Pro, and Glu) and source AAs
A B

DC

FIGURE 2 | Water temperature (A), salinity (B), nitrate concentration (C), and surface chlorophyll-a concentration (D) near the study site.
A B

FIGURE 3 | Total mass flux, lithogenic flux, organic carbon flux (A), and percentages of total, organic, and THAA carbon (B) for sinking particle collected at depths
of 1000 m and 2250 m.
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(Gly and Phe) (Figures 6C, D and Tables S5, S6). Trophic AAs
showed a wide d15N range at both depths (0.4–19.7‰ at 1000 m
and 0.3–16.0‰ at 2250 m), whereas the source AAs showed a
narrow d15N range (−1.9–3.8‰ at 1000 m and −1.8–5.4‰ at
2250 m). The d15N values of both trophic and source AAs were
the highest in October and largely decreased from November
2017 to the end of the study period. Among trophic AAs, the
d15N values of Ala, Leu, and Ile decreased by ~10‰ from
October to March at both depths.

The SV values (Figure 7B and Tables S5, S6) were mostly
lower at 1000 m (0.7–2.9) than those at 2250 m (1.7–3.5). Sinking
particles at 1000 m showed a larger increase in SV values (1.9) as
compared to those at 2250 m (0.9) from July 2017 to March 2018.
TP was usually higher at 1000 m (1.5–3.1) than at 2250 m (1.3–
Frontiers in Marine Science | www.frontiersin.org 6
2.2), with the exception of February 2018 (Figure 7D and Tables
S4, S5). The TP values at 1000 m gradually decreased (2.9 to 2.0)
from September 2017 to March 2018, whereas the TP values at
2250 m increased (1.7 to 2.6) from November 2017 to
February 2018.
DISCUSSION

Particle Fluxes and Compositions Between
1000 and 2250 m Water Depths
A previous study in the UB, conducted from 2011 to 2012 (Kim
et al., 2017b), showed that POC fluxes between 1000 and 2300 m
were mostly similar, and lithogenic fluxes were apparently larger
A B

FIGURE 4 | Total nitrogen flux (A) and THAA-N/TN percent (B) in sinking particle collected at 1000 m and 2250 m.
FIGURE 5 | Molar percentage of amino acids in sinking particles collected at depths of 1000 m and 2250 m.
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at 2300 m than at 1000 m. Additionally, Kim et al. (2020)
reported that the warm core eddy during El Niño (2015–2016)
enhanced organic carbon and lithogenic fluxes of sinking
particles and potentially invoked sediment mobilization and
transport from the Korea Strait and/or shelf and slope of the
UB region. These results imply that the mesopelagic and
bathypelagic layers in the UB are not solely influenced by the
sinking flux from the euphotic layer. Thus, assessing the organic
matter composition of sinking particles would provide important
Frontiers in Marine Science | www.frontiersin.org 7
information for understanding the seasonal and interannual
variation of downward organic particle sources.

In 2017, the strong halocline in August persisted until October,
and active vertical mixing was found in December (Figure 2B).
The upward supply of nutrients within 100 m water depth was
observed from January 2018, likely fuelling phytoplankton bloom
from late February (Figure 2C). Those annual variations of nitrate
(Figure 2C) and Chlorophyll-a (Figure 2D) showed similar
pattern to previous studies, suggesting the pelagic production
A B

DC

FIGURE 6 | Bulk nitrogen isotope values of sinking particles collected at depths of (A) 1000 m and (B) 2250 m. Nitrogen isotope values of individual AAs measured
from sinking particles collected at depths of (C) 1000 m and (D) 2250 m.
A B

DC

FIGURE 7 | The diagenetic parameters of sinking particles at depths of 1000 m and 2250 m. (A) molar percentage of non-proteinaceous AAs (BALA+GABA),
(B) degradation index, (C) SV values estimated by trophic AAs, and (D) trophic position.
April 2022 | Volume 9 | Article 824479
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regulate seasonal variation of sinking particle fluxes (Kwak et al.,
2013; Joo et al., 2014; Rho et al., 2016).

The AA concentrations of sinking particle and sediment
decrease rapidly through microbial degradation in marine
environment, and the relative proportions of AAs are altered
by microbial activity (Dauwe et al., 1999). THAA fluxes in
sinking particles are usually correlated with the total mass and
organic carbon fluxes (Gupta and Kawahata, 2000; Honjo et al.,
2000; Ingalls et al., 2006). In this study, THAA fluxes at 1000 m
were significantly correlated with organic carbon flux, but not
with total mass flux. The POC contributions to total mass fluxes
were mostly smaller at 2250 m than at 1000 m (Figure 3B).
Interestingly, the POC percentage and total mass flux displayed
seasonally different trends. The total mass flux at 1000 m was the
largest between October and November, but gradually decreased
from November. The total mass flux at 2250 m was the highest in
February. However, both water depths showed a continuous
decline in the POC percentage from summer to the next spring.
This trend is apparently different from the seasonal POC fluxes
at both water depths, indicating that the contributions of
lithogenic fluxes to total mass fluxes increased from the
summer of 2017 to early spring of 2018 (Figure 3A). Kim
et al. (2017b) suggested that aeolian lithogenic and organic
particles could be important components of sinking particles at
1000 m in the UB, using Al contents and radiocarbon isotopes. In
addition, lithogenic fluxes at 1000 and 2000 m in the UB are
supported by the supply of clay minerals by lateral transport and
resuspension from the seafloor, as demonstrated using excess Mn
contents and radiocarbon isotopes (Kim et al., 2020). Thus,
sinking particles at both 1000 and 2000 m in the UB should
contain different proportions of downward particles and
additional supply from resuspension and lateral transport. This
result suggests that sinking particles would show different
organic matter contents and their degree of microbial
degradation between 1000 m and 2250 m water depths.

Seasonal Variation of Basal Nitrogen
Sources in the East Sea
The application of CSIA-AA is based on the separation of
trophic enrichment and baseline d15N in consumers,
characterizing trophic and source AAs, respectively. Thus, both
trophic and source AAs have been widely used to understand
marine ecology and biogeochemistry (Sherwood et al., 2014;
Pomerleau et al., 2017; Shen et al., 2021). The d15NTHAA values
were larger than bulk d15N values, due to the dominant molar
contribution of trophic AAs, which have greater d15N values
compared to bulk and source AAs. The d15NTHAA values of
sinking particles at 1000 m showed significant correlation with
bulk d15N values, although the contribution of THAA to TN
percent was less than 20% (Figure 4B). In contrast, THAA-N/
TN percent at 2250 m were relatively larger compared to those at
1000 m, and the correlation between d15NTHAA and bulk d15N
values at 2250 m were not clear, suggesting different organic
matter sources between two sampling depths as mentioned in
previous section. Nevertheless, our data showed generally
decreasing trends of the d15N values of the bulk and AAs from
Frontiers in Marine Science | www.frontiersin.org 8
autumn to early spring. These results were previously observed
by bulk d15N values of sinking particles collected in the East Sea
(Nakanishi and Minagawa, 2003; Kwak et al., 2017).

Phenylalanine d15N (d15NPhe) can trace the baseline d15N in
the food web (McClelland and Montoya, 2002; Popp et al., 2007).
Microbial degradation of AAs occurs non-selectively (McCarthy
et al., 2007) and usually increases the d15N values of residual AAs
in dissolved organic matter (Calleja et al., 2013; Yamaguchi and
McCarthy, 2018). Microbial degradation can alter even d15NPhe

values in detrital substrates by external hydrolysis of
proteinaceous material (Hannides et al., 2013; Ohkouchi et al.,
2017). However, the d15NPhe decreased by 5.3‰ at 1000 m and
3.9‰ at 2250 m from late October to March, suggesting a
substantial decrease in d15N baseline at both depths (Figure 4).
Possible reasons for such a decrease might be the increase in
atmospheric deposition of inorganic nitrogen fueling primary
production (Kim et al., 2017a; Park et al., 2019a) and utilization
of nitrogen sources in primary production (Nakanishi and
Minagawa, 2003). In this study, the POC flux decreased
gradually, and the microbial records increased during autumn
and winter, as demonstrated by the diagenetic indicators.
Atmospheric nitrogen derived from fertilizers and fossil fuels
usually ranges between d15N values of 0–−2‰ (Kim et al.,
2017a). Nitrate d15N values in aerosols range from −17.2 to
6.5‰, as reported in the central part of Taiwan (Guha et al.,
2017). Kim et al. (2017a) suggested that atmospheric nitrogen
deposition from inland China influences the d15N values of
sediments in the Yellow Sea and East Sea. In winter, the
atmospheric nitrogen (ammonia and nitrate) showed higher
concentrations compared to other seasons (Park et al., 2019a),
but their seasonal flux is usually low because of minimum
precipitation (Yan and Kim, 2015). According to the models,
approximately 10%–15% of annual new production, and up to
25% of summer/early autumn new production in the southern
East Sea could be attributed to the atmospheric deposition of
nitrogen (Onitsuka et al., 2009; Kang et al., 2010). Thus, this
additional nitrogen input from the atmosphere could not
significantly reduce the d15N values of sinking particles from
winter to early spring. Another possible cause of the d15NPhe

decline could be an increase in dissolved inorganic nitrogen
availability. Nakanishi and Minagawa (2003) suggested that
enhanced nutrient availability by vertical mixing should cause
relatively lighter nitrogen isotope assimilation through primary
production in the euphotic layer, resulting in lower d15N values
of sinking particles in winter in the East Sea. In this study, water
column was completely mixed within 100 m water depth in
winter, and nitrate concentration in surface mixed layer was the
largest in January 2018 (Figure 2C). Primary producers would
assimilate more 14N of nitrate, resulting in declined d15N values
of both total nitrogen (Altabet et al., 1999) and AAs nitrogen
(Shen et al., 2021) in sinking particles. A decrease in d15N
baseline was observed at both water depths (Figures 6C, D).
In the East Sea, large amounts of organic particles in the euphotic
layer can be rapidly transported by the active biological pump.
This was also evidenced by the high organic carbon contents
(2.6%–2.9%) in surface sediments (Lee et al., 2008).
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AA Compositions and Diagenetic Indicators
The THAA-N contents represent labile organic nitrogen within
total nitrogen pool (Gupta and Kawahata, 2000). This study
showed larger THAA-N/TN values in sinking particles at 2250 m
than those at 1000 m (Figure 4B), suggesting additional AAs
supplied by lateral transport and resuspension. Those different
sources of organic nitrogen between 1000 m and 2250 m were
also exhibited by AAs compositions (Figure 5). For example,
glycine could be a potential indicator for microbial degradation
(McCarthy et al., 2007; Calleja et al., 2013) because relative molar
percent of glycine increase as microbial degradation proceeds, as
selective preservation of glycine by siliceous exoskeletons of
diatom cells (Hecky et al., 1973; Pantoja and Lee, 2003).
However, our results showed molar percent of glycine at 1000
m (15.1 ± 1.0%) were greater than those at 2250 m (9.8 ± 0.8%),
even though sinking particles at 2250 m were more microbially
degraded as revealed by diagenetic indicators (Figures 7A-C).
This suggests the source composition of AAs should be different
especially for sinking particles at 2250 m, including additional
sources of organic matter through lateral transport processes.
Possible sources of sinking organic matter at 2250 m in the UB
region could be derived from shelf and slope, displaying
considerable organic carbon fluxes from lateral transport (4.5-
7.8 g C m-2 year-1), compared to those from vertical flux (5.1-5.8
g C m-2 year-1) from the water column (Lee et al., 2019). This
result explains the amounts of organic matter at 2250 m could be
larger than those at 1000 m, and the detailed organic matter
composition should be different between two sampling depths.

Non-proteinaceous AAs, BALA, and GABA can be used as
diagenetic indicators and are the transformation products of
microbial activity, with significant correlation with DI values
(Dauwe et al., 1999; Vandewiele et al., 2009). They accounted for
2%–3% of the total AA concentration in sediment samples
(Carstens and Schubert, 2012). The combined molar
percentage of BALA and GABA was higher at 2250 m than at
1000 m (Figure 7A). Additionally, the DI showed significant
differences at 1000 m and 2250 m (Figure 7C), along to changes
in AA compositions through degradation processes, allowing
evaluation of organic matter degradation (Dauwe and
Middelburg, 1998). The ranges of DI values of sinking particles
in this study were commonly observed in previous studies as well
(Dittmar et al., 2001; Batista et al., 2014; Shen et al., 2021). In this
study, the DI values at 2250 m were mostly negative and lower
than those at 1000 m. These results indicate that organic particles
at 2250 m experienced higher microbial degradation.

Temporally, the combined molar percentage of BALA and
GABA at 1000 m gradually increased from September 2017 and
was the highest in February 2018 (Figure 7A). TheDI values at 1000
m were relatively high in December 2017 and February and March
2018 (Figure 7C). These results suggest that microbial degradation
is significant during the less productive seasons, which showed low
concentration of surface Chl-a (Figure 2D) and small export fluxes
of organic carbon (Figure 3B) and total nitrogen (Figure 4B).

SV values for algae and fresh organisms (1.0–1.5) differ from
those of microbially degraded organic matter (> 1.5), as reported in
previous studies on non-selective and irregular microbial
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degradation and resynthesis of AAs (McCarthy et al., 2007;
Yamaguchi et al., 2017). Higher SV values at 2250 m than at
1000 m imply that organic matter at 2250 m underwent stronger
microbial degradation and resynthesis. This is consistent with the
implications gained from the BALA+GABAmol% andDI. Sinking
particles at both water depths showed a gradual increase in SV
values fromAugust 2017 toMarch 2018 due to a decrease in organic
carbon supply (Figure 3B), and the subsequently higher microbial
signature in winter-early spring compared to late summer-autumn.

Sources of Organic Matter in Sinking
Particles Based on Trophic Position
The trophic position determined by the difference in d15N between
trophic and source AAs can exclude the temporal and/or spatial
fluctuation of baseline d15N at the bottom of the food web. The TP
values of sinking particles are the average TP values of the
aggregated organic components derived from the relevant living
organisms as well as non-living organic matter such as fecal pellets,
dead algae cells, and other organic debris (Batista et al., 2014).
Primary producers usually display a TP of 1.0 (Chikaraishi et al.,
2009). The TP values of sinking particles in the water column below
the euphotic layer showed a wide range (1.3–1.9) (Figure 8). The
average TP of the time-series sinking particle samples at 1000 m
water depth in the East Sea was 2.3 ± 0.4, which is significantly
greater than that observed at the same depth in the Equatorial
Pacific Ocean (Figure 8). However, the TP values of sinking
particles in the Equatorial Pacific Ocean were more enhanced at
3600 m than at 1000 m (McCarthy et al., 2007). Such results were
caused by the largely preserved phytodetritus flux during 1992–
1993, fueling deep-seamicrobes andmetazoans (Smith et al., 1996).
Shen et al. (2021) reported that the enhanced carnivory of
zooplankton increased the TP (up to 1.9) of sinking particles
during the El Niño period (2002–2003) in Monterey Bay. In
contrast, the phytoplankton community shifted to larger cells,
shortening the food chain, and decreasing the TP of sinking
particles in Monterey Bay during the other periods (Shen et al.,
2021). In addition, Batista et al. (2014) suggested that a decrease in
zooplankton biomass and an increase in Chl-a in the Santa Barbara
Basin could have led to a decline in the TPvalues of sinking particles
and sediment.Overall, the variation inTPvalues of sinking particles
was likely controlled by the relative contribution of organic matter
derived from phytoplankton and/or zooplankton (herbivorous,
omnivorous, and carnivorous) biomass in the entire water column.

The average value (2.3 ± 0.3) of TP in the East Sea was much
higher than those in other seas (Fig. 8), demonstrating larger
contribution of relatively higher trophic position consumer-
derived organic matter in the water column. For example, genus
Calanus, one of the most dominant calanoid copepod in the East
Sea, displayed 0.5 unit larger TP values (~2.9) compared those in
other seas in the Korean peninsula (Kim et al., personal
communication). It seems to be related with different trophic
dynamics of planktonic food web structure, resulting from larger
proportion of small (nano and pico) size phytoplankton to
primary production in the East Sea (Joo et al., 2017; Jang et al.,
2021). In addition, aerobic microbes may influence the enhanced
TP values of sinking particles, but the effect of microbes attached
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to the surface of sinking particles might be limited, considering
much smaller abundance of microbial biomass and more positive
DI values in the East Sea. Thus, the TP values of sinking particles
in the East Sea suggest a predominantly zooplankton-derived
organic matter, such as fecal pellets. Eglite et al. (2018) reported
that the TP values of mesozooplankton (100–300 μm) were close
to 3.0 in the central Baltic Sea, proposing that diazotrophic
cyanobacteria or dinoflagellate as primary producers would be
transferred to mesozooplankton via mixo- and/or heterotrophs.
TP values of fecal pellets ranged 2.1 to 2.6 in a zooplankton
mixture from Sargasso Sea and euphausid in theNortheast Pacific,
and were similar to those of the zooplankton body themselves
(2.2–2.6) (Doherty et al., 2021). The higher TP values observed in
this study could be related to the fecal pellet TP in the East Sea,
which could be tightly coupled with omnivore and/or carnivore
production, particularly at a water depth of 1000 m.

TP values varied in large ranges (1.3–3.1) seasonally and with
depth. At 1000 m, the TP values of sinking particles were mostly
over 2.0 (Figure 7D), suggesting that fecal pellets and other organic
debris derived from heterotrophs were the dominant sources of
sinking organic matter. Previous studies in the East Sea reported
that the contribution of picoplankton (< 2 μm) to total primary
production was up to 35% in summer (Joo et al., 2017). This pico-
sized phytoplankton dominancy would enhance the magnitude of
the microbial loop in the euphotic layer, and the organic matter
derived from higher trophic organisms could be occupied by
sinking organic particles in nearly all seasons. On the other hand,
zooplankton biomass in the East Sea is usually maximum in spring
and minimum in winter in the upper layer of the water column
(Iguchi, 2004; Park et al., 2016a). The seasonal variation in TP
values of sinking particles reflects the average TPs of zooplankton
communities and their biomass. The TP values of sinking particles
at 1000 m were high (2.3–3.1) from July to September, and
gradually decreased below 2.0 from late September to March.
These seasonal variations of TP values were previously reported
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in the Ulleung Basin, using ecological modeling and observational
results of phytoplankton and zooplankton community composition
and their biomass (Lee and Yoo, 2016). Thus, in winter, the
decreased proportion of fecal pellets in sinking particles would
result in the TP decline at 1000 m, probably due to the smaller
biomass of zooplankton and decreased organic carbon flux. Rather,
phytoplankton and its debris would contribute more to sinking
particles and relative microbial activity would be enhanced,
increasing SV values up to 2.9 in winter and early spring.

On the other hand, the TP values of sinking particles at 2250m
(1.9 ± 0.2) were mostly lower than those at 1000 m, indicating
different sources of organic components between the two
sampling depths. Possible sources of organic particles at 2250 m
would be organic matter exported from 1000 m, resuspended
from the seafloor, and advected from shelf and slope (Lee et al.,
2019). Although the available literature is limited, previous studies
have shown that the TP values of surface sediments (~1.0) can be
lower than those of sinking particles (1.0–1.9) of sinking particles
(Carstens et al., 2013; Batista et al., 2014). Previous study in theUB
region reported the large amounts of excess Mn contents at 2300
m compared to those at 1000 m, suggesting high magnitude of
sediment remobilization to the water column (Kim et al., 2017b).
Such results would indicate sediment resuspension and lateral
transport might be the causes for lower TP values of sinking
particles at 2250m in this study. In our study, TP values of sinking
particles were usually lower at 2250 m than those at 1000m for all
seasons except February 2018, as in previous studies (Carstens
et al., 2013; Batista et al., 2014). However, an increased TP value
(2.6) was observed at 2250m, with relatively larger organic carbon
fluxes in February 2018 compared to those at 1000m, suggesting a
possibly larger contribution of organic particles derived from
higher trophic organisms, caused by significant lateral transport
in February 2018. Further study needs to elucidate the seasonal
variation of input of lateral transport to UB region, for better
understanding of organic matter dynamics in the East Sea.
FIGURE 8 | Trophic position of sinking particles in this study and reference literatures. Note that all TP values were calculated with same equation used in this study.
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The previous modeling study in the Ulleung Basin suggested
the phytoplankton community will be shifted to smaller cells
(flagellates and picophytoplankton) with cascading changes of
planktonic food web structure in the future (Lee and Yoo, 2016).
The decrease in primary production and the increase in small
phytoplankton (< 2 μm) during recent decades has influenced the
composition of the upper trophic level in the East Sea (Joo et al.,
2014; Joo et al., 2017). In addition, particle size and residence time
in the euphotic layer can affect the biological pump efficiency
(Kwak et al., 2017). Our results suggest that the seasonal variation
of TP values in sinking particles is controlled by relative biomass
abundances of phytoplankton and zooplankton communities.
The trophic position of sinking particles provides useful
planktonic food web information to better understand the
temporal and spatial changes of biological pumps in marine
environments. Furthermore, the inter-annual variation of TP
values in sinking particles would be helpful to understanding
changes in the low trophic level food web structure in the East Sea
according to the recently changing climate.
CONCLUSION

sIn the present study, AAs concentrations and their nitrogen
isotope ratios analysis of sinking particles in the East Sea were
used to understand the relative contribution of organic matter
derived from different trophic organisms, and how their relative
proportions could differ according to season and depth. The
nitrogen isotope ratio of phenylalanine of sinking particles, as
used for nitrogen baseline, decreased during winter at both water
depths (1000 m and 2250 m), suggesting a seasonal change in the
dissolved inorganic nitrogen source for pelagic primary
production. The TPs of sinking particles in the East Sea were
apparently higher than those in other locations, probably due to
more tightly coupled secondary production through
zooplankton grazing. TP values demonstrated an apparent
decreasing trend at 1000 m in winter and early spring,
indicating a decline in the proportion of fecal pellets in sinking
particles. In addition, sinking particles showed lower TP values at
2250 m than those at 1000 m in all seasons except for February
2018, probably due to the greater contribution of resuspended
and/or laterally transported organic particles at 2250 m. On the
other hand, the SV values of sinking particles at both depths
indicated less planktonic organic matter fluxes and the following
relatively more microbial alteration signature in winter and early
spring, compared to those in late summer and autumn. Sinking
particles at 2250 m reflected more significant microbial
degradation than those at 1000 m, but the THAA-N/TN values
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were higher than those at 1000 m, with additional particle
sources from resuspension and lateral transport. In this study,
the TP and SV values in sinking particles revealed the relative
proportions of organic matter derived from lower trophic level
organisms, providing a better understanding of the seasonal
variation of planktonic ecosystem structure in the water column.
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