
1. Introduction
Along the deep ocean circulation from the North Atlantic to the North Pacific, the dissolved organic carbon 
(DOC) concentration in the deep ocean (>1,000 m) decreases by about 29% (Hansell & Carlson, 1998) and the 
radiocarbon ( 14C) age increases from about 4,900 to 6,500 years (Druffel et al., 1992, 2016, 2019; Williams & 
Druffel, 1987). DOC in the deep ocean is thought to repeat the deep ocean circulation several times. Thus, the 
aged DOC in the deep North Pacific is believed to return to the surface of the North Atlantic to close the loop.

Vertical distribution of the  14C content of DOC (∆ 14C; Stuiver & Polach,  1977) can be explained by a 
two-component mixing model, where DOC is a mixture of aged DOC existing uniformly throughout the water 
column and freshly-produced, young DOC found mainly in the surface (Beaupré & Aluwihare, 2010; Mortazavi 
& Chanton, 2004; Williams & Druffel, 1987). For example, the Δ 14C value of DOC (−146‰) in surface water 
of the North Pacific was determined to be a mixture of 44% aged DOC (Δ 14C = −525‰) and 56% young DOC 
(Δ 14C = +150‰) (Williams & Druffel, 1987). According to the two-component mixing model, the refractory 
DOC in the deep North Atlantic is higher in concentration and higher in ∆ 14C than that in the deep North Pacific. 
Therefore, young and refractory DOC should be added during the transit from the deep North Pacific to the 
surface of the North Atlantic. However, DOC of various residence times (hours to thousands of years) co-exist in 
the surface water (Hansell, 2013). Thus, it is difficult to understand the behavior of the aged DOC in the surface 
water.

We focused on the linkage of the DOC cycles through the surface current between the Northwest Pacific and 
the East Sea (also known as the Japan Sea). The East Sea is a marginal sea surrounded by Asia and the Japa-
nese Islands (Figure 1). Its surface is about 1 × 10 6 km 2 in area and the maximum depth is >3,500 m (Chough 
et al., 2000). The East Sea is connected to the Northwest Pacific via straits shallower than 150 m (Lee et al., 2009). 
Surface water input to the East Sea mainly occurs via the inflow of the Tsushima Warm Current, a branch of the 
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Kuroshio, through the Korea Strait in the south (K. Kim et al., 2004). Upon 
entering the East Sea, the Tsushima Warm Current spreads into the Ulle-
ung Basin, bifurcating into two to three branches, with one of them flowing 
north along the east coast of Korean Peninsula and another flowing north of 
Japan. A deep water mass is formed in winter near Vladivostok, driving a 
rapid, deep overturning circulation with a turnover time of about 100 years 
(for the layer >1,000 m) (K. R. Kim & Kim, 1996; Kumamoto et al., 1998). 
Therefore, it is likely that the DOC in the deep East Sea is a mixture of the 
DOC from the surface water of the Northwest Pacific and the DOC produced 
in the East Sea.

The previously reported DOC concentration in the deep (>1,000 m depth) 
East Sea (>50 μM) (T. H. Kim et al., 2015, 2017) is significantly higher than 
the deep North Pacific (<39 μM) (Hansell et al., 2009) and the high-latitude 
North Atlantic (∼50 μM; the Nordic Sea) (Amon et al., 2003). High primary 
production (Joo et al., 2016; Yamada et al., 2005) and rapid turnover of the 
deep waters have been suggested as potential causes (T. H. Kim et al., 2015). 
However, the causes of the high DOC concentration in the East Sea are 
not clear. In this study, we measured Δ 14C of the DOC in the East Sea and 
assessed the connectivity with the Northwest Pacific in DOC cycling. We 
used the East Sea as if it were a model miniature ocean (K. Kim et al., 2001). 
Such geological setting offers a chance to explore the mechanisms through 
which the old DOC found in the water column is circulated to different areas 
by surface currents.

2. Methods
2.1. Sample Collection

Seawater samples were collected from 26 October to 22 November 2019 
aboard the R/V Akademik Oparin of the Pacific Oceanological Institute, 

Russia. Vertical distribution of DOC concentrations and Δ 14C values along with hydrographic properties were 
measured at three sites from the Ulleung Basin (Station M4, 37°00′N; 130°57′E), the subpolar front region 
(Station M9, 39°00′N; 131°37′E), and the Japan Basin (Station M14, 41°30′N; 132°20′E) along a meridional 
transect in the East Sea (Figure 1). Samples from depths shallower than 400 m were filtered directly from Niskin 
Bottles through pre-combusted (450°C for 4 hr) GF/F (0.7 μm pore size) filters and collected in pre-combusted, 
1 L Amber Boston Round glass bottles. Samples from depths deeper than 400 m were not filtered because the 
concentration of particulate organic carbon (POC) is nominal compared to that of DOC (Druffel et al., 2019). The 
samples were stored at −20°C until analysis (Walker et al., 2017). Samples for determination of DOC concentra-
tion were filtered using pre-combusted GF/F filters and were collected in pre-combusted glass ampules. Samples 
were acidified with 6 M HCl to pH < 2, flame-sealed, and stored at room temperature (Halewood et al., 2022).

2.2. DOC Concentration

DOC concentration was measured with a total organic carbon analyzer (TOC-L; Shimadzu) following the 
high-temperature catalytic oxidation method within 2  months of sampling (Dittmar et  al.,  2006; Halewood 
et  al.,  2022). After removing inorganic carbon from the sample by purging ultrapure air (zero grade; 20.5% 
oxygen in nitrogen), the sample was injected into a combustion tube (720°C) containing a catalyst (Pt-coated Al) 
to oxidize DOC. The analytical uncertainty estimated by repeated measurements of the deep seawater reference 
material (DSR; ∼43 μM; University of Miami; Hansell Organic Biogeochemistry Lab) was ±2 μM.

2.3. Radiocarbon Analysis of DOC

The oxidation of DOC to CO2 for  14C measurement was performed following the UV oxidation method (Beaupré 
et al., 2007). About 600 mL of each thawed sample was transferred to a quartz reactor and acidified with 1 mL 

Figure 1. Map of the East Sea (Japan Sea) showing the sampling locations. 
At the surface, the Tsushima Warm Current, a branch of Kuroshio, flows into 
the East Sea through the Korea Strait (maximum depth 150 m). A branch of 
the Tsushima Warm Current flows north to ∼40°N along the coast of Korea, 
then is detached to form the subpolar front (K. Kim et al., 2004). Deep waters 
generally flow counter-clockwise (gray dashed line; Senjyu et al., 2005) along 
the three basins: the Japan Basin (JB), Ulleung Basin (UB), and Yamato Basin 
(YB). Station M4 is located in the UB and Station M14 in the JB. Station M9 
is located at the subpolar front region.
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of 85% phosphoric acid (AC grade) to pH < 2. After stripping dissolved inorganic carbon (DIC) with ultrapure 
nitrogen (400 mL min −1 for 90 min), the sample was irradiated with UV (1200 W; mercury arc lamp) for 6 hr. 
The CO2 was stripped with nitrogen (120 mL min −1 for 90 min), cryogenically purified and quantified manomet-
rically, and flame-sealed in a Pyrex tube.  14C content was measured at the National Ocean Sciences Accelerator 
Mass Spectrometry Facility at Woods Hole Oceanographic Institution. The standard deviation from five pairs of 
duplicate Δ 14C analysis was ±8‰. Blank correction was performed by comparison of the Δ 14C values of the 
processed and unprocessed standard materials using glucose (Δ 14C = +23‰) and glycine (Δ 14C = −1,000‰) 
standards (Fang et al., 2020; Hwang & Druffel, 2005). The Δ 14C values of the processed glucose and glycine 
standards were +21‰ (n = 1; 483 μg C), and −973 ± 3‰ (n = 2; 421 μg C and 509 μg C), respectively. The 
blank amount was estimated to be 12.8 ± 1.5 μg C with the Δ 14C value of −23 ± 5‰, indicating that most of the 
blank was air CO2. The amount of blank correction was smaller than 14‰.

The serial-oxidation experiments were performed on two samples by UV-irradiation for 10, 20, 30, 60, and 
240 min with He as a carrier gas (Beaupré & Druffel, 2012; Beaupré et al., 2007). We designed the length of each 
irradiation so that each step releases ∼20% of the total DOC as CO2 gas. Increased UV-irradiation is believed 
to oxidize increasingly more refractory fractions. This experiment was to investigate the Δ 14C values of DOC 
fractions having different resistance to UV-irradiation. A previous study demonstrated that the earlier DOC was 
oxidized by UV, the higher was the observed Δ 14C value, suggesting a relationship between photochemical labil-
ity and biological lability (Beaupré & Druffel, 2012). The amount and Δ 14C value of the blank for these processes 
were estimated to be 9.2 ± 2.3 μg C and −476 ± 128‰, respectively, based on the processed Δ 14C values of 
glucose (+11 ± 6‰; n = 2; 419 and 427 μg C) and glycine (−990 ± 5‰; n = 2; 421 and 531 μg C), after 6 hr of 
UV-irradiation. Thus, this blank correction is probably larger than the actual blank effect, considering the much 
shorter UV-irradiation times for each step and there is possibility of over-correction. The blank correction was 
from 6 to 17‰ depending on the amount of recovered CO2 and Δ 14C value.

3. Results and Discussion
3.1. Concentrations and Δ 14C Values of DOC in the East Sea

The DOC concentrations were 67–74 μM in the upper 50 m layer. The mean value at ∼200 m depth at all stations 
was 62 ± 1 μM (n = 3; Figure 2a). It is notable that the DOC concentrations at depths of 75 and 100 m at M4 in 
the Ulleung Basin were significantly lower than those at adjacent depths. The DOC concentration ranged from 
60 to 63 μM between 200 and 500 m, below which values gradually decreased. The mean DOC concentration in 
the deep layer at all stations was 55 ± 3 μM (n = 11). The DOC concentrations in the surface water of the East 
Sea were similar to the observed values of the warm tropical and subtropical oceans (65–80 μM) (Hansell & 
Carlson, 2014), but those in the deep layer of the East Sea were significantly higher than those of the open oceans 
(34–∼50 μM) (Hansell & Carlson, 1998; Hansell et al., 2009).

The Δ 14C values of DOC in the East Sea varied with depth in a similar fashion to the DOC concentration 
(Figure 2b). The Δ 14C values in the upper 50 m of the water column were −284 to −225‰ and decreased to 
an average of −318 ± 17‰ by 200 m. At 75 and 100 m at Station M4, Δ 14C values were −374‰ and −354‰, 
50‰–100‰ lower than those at adjacent depths. The Δ 14C values decreased from 500 to 1,000 m and were 
relatively constant below 1,000 m (mean −355 ± 13‰, n = 11) at all stations, showing no significant spatial 
variation. The lack of spatial variation is consistent with the rapid horizontal circulation in the deep layer, within 
a decade or less (note that horizontal circulation in the deep layer is much faster than the vertical turnover in the 
East Sea; M. Kim et al., 2022; Senjyu et al., 2005). The Δ 14C values in the deep layer were significantly higher 
(by 19‰–177‰) than those of the open oceans (Figure 2b).

The mean Δ 14C value of the DIC in the deep East Sea (collected in 1999) was −49 ± 14‰ (Sim et al., 2014), 
and is similar to that of the Atlantic deep waters in 1991 (−71 ± 20‰) (Druffel et al., 1992), indicating young 
ages and the presence of bomb  14C in the deep waters. The high DOC concentrations together with the high DIC 
Δ 14C values imply that the DOC cycle in the East Sea somewhat resembles that in the North Atlantic. The mean 
DOC Δ 14C value in the deep layer of the East Sea was about 20‰ higher than that in the high-latitude (60°N) 
North Atlantic in 2013 (−374 ± 8‰) (Druffel et al., 2016). Despite the close proximity, the mean DOC Δ 14C 
value in the deep layer of the East Sea was considerably higher than the mean of −532 ± 15‰ in the North 
Pacific (Druffel et al., 2018, 2019, 2021). This difference in DOC Δ 14C values is caused by the absence of direct 
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exchange of deep waters between the East Sea and the North Pacific, and also by much faster vertical circulation 
in the East Sea than the global ocean circulation (Figure 2b and Figure S1 in Supporting Information S1).

The  14C age of DOC in the entire water column of the East Sea ranged from 2,000 to 3,700 years (Figure 2b). 
The old  14C age of DOC cannot be explained by aging alone during the deep water circulation, given that the 
turnover time of the deep water is ∼100 years (K. R. Kim & Kim, 1996). Although no large rivers drain into the 
East Sea (Chough et al., 2000), the Yellow River and the Yangtze River, draining into the Yellow Sea and the East 
China Sea, may supply riverine DOC eventually to the East Sea (Ding et al., 2019; Kwon et al., 2018). The DOC 
originated from the Yellow River and the Yangtze River are generally old (300–1,700  14C years) and have low 
δ 13C values (−32.2‰ to −21.0‰) (Wang et al., 2012, 2016). However, the riverine DOC appears to be degraded 
quickly and its influence is confined within the close proximity of the mouths of these rivers (Han et al., 2022). 
The δ 13C values of DOC in the East China Sea (mean = −21.1 ± 1.1‰, n = 21; Han et al., 2022), and the East 
Sea (−20.4 to −21.7‰; T. H. Kim et  al.,  2015) indicate a dominant marine source of DOC. Therefore, the 

Figure 2. The vertical profiles of (a) the dissolved organic carbon (DOC) concentration and (b) the Δ 14C values and  14C 
ages of the DOC, and (c) the cross plot of the DOC Δ 14C values and the reciprocal of the DOC concentrations. The data 
presented in all plots for comparison are from the Atlantic (Druffel et al., 2016), Pacific (Druffel & Griffin, 2015; Druffel 
et al., 2018, 2019, 2021), and Southern Ocean (Druffel et al., 2021). The regression line in (c), shown as a black line, with 
gray shading representing the 95% confidence interval, is derived from the East Sea (Japan Sea) data only.
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influence of riverine DOC is likely small. DOC concentration and Δ 14C data obtained in water east of Jeju Island 
and south of the Korea Strait showed that the DOC in this region was a mixture of the subsurface DOC from the 
Kuroshio water and locally produced DOC (Oh & Hwang, 2023). Another possible source of aged DOC is from 
the sediment. The Δ 14C values of the surface sediment (core-top, 0–1 cm) in the East Sea ranged from −100‰ to 
−375‰ (M. Kim et al., 2020; Otosaka et al., 2008). However, Bauer et al. (1995) argued that DOC supplied from 
the sediments is minor. A more feasible source of the aged DOC is the surface water inflow (Tsushima Warm 
Current, Figure S2 in Supporting Information S1) from the Northwest Pacific into the East Sea (see below).

According to the two-component mixing model, DOC is a mixture of a recently produced labile DOC and 
refractory background DOC that is uniformly present in the entire water column (Beaupré & Aluwihare, 2010; 
Mortazavi & Chanton, 2004; Williams & Druffel, 1987).

[DOC]total = [DOC]background + [DOC]excess (1)

[DOC]total × Δ14Ctotal = [DOC]background × Δ14Cbackground + [DOC]excess × Δ14Cexcess (2)

These two equations can be rearranged to show the relationship between the Δ 14Ctotal and 1/[DOC]total as follows:

Δ14Ctotal =
(

Δ14Cbackground–Δ14Cexcess

)

[DOC]background(1∕[DOC]total) + Δ14Cexcess (3)

This plot, known as the Keeling plot, is a straight line, with (Δ 14Cbackground − Δ 14Cexcess)[DOC]background represent-
ing the slope (Keeling, 1958; Mortazavi & Chanton, 2004). The y-intercept, Δ 14Cexcess, indicates the Δ 14C value 
of the DOC added to the mixture.

The crossplot of 1/[DOC]total and DOC Δ 14C values in the open ocean reveals a significant linear relationship 
(Mortazavi & Chanton, 2004). The DOC results in the East Sea also show a significant linear relationship of 
the crossplot (r 2 = 0.61, n = 33, p < 0.0001; Figure 2c). The y-intercept of the linear regression, Δ 14Cexcess, is 
+84 ± 48‰, and is within the range of DIC Δ 14C values in the surface water (<200 m) in the East Sea collected 
in 1999 (63‰–85‰) (Sim et al., 2014). This result demonstrates that the two-component model is valid for the 
East Sea DOC and the major source of the Δ 14Cexcess was in situ production of organic matter in the surface water 
via photosynthesis.

Because the East Sea is connected to the Northwest Pacific through the shallow straits, we compared the East 
Sea results with those of the open ocean values. The East Sea results were more closely aligned with those of 
the North Pacific (Figure 2c). This alignment implies that they share the same source of DOCbackground. Also, the 
linearity argues against significant removal of DOCbackground during the transport from the Northwest Pacific to the 
East Sea. The insignificant removal by either photodegradation (Mopper et al., 1991) or microbial degradation 
(Jiao et al., 2010; Shen & Benner, 2018) of the DOCbackground in the surface water was likely due to the short travel 
time of the surface water. Therefore, we hypothesize that the DOC in the deep East Sea is a mixture of DOC simi-
lar to the DOCbackground in the North Pacific and DOCexcess produced in the East Sea. The mean concentration and 
Δ 14C value of deep DOC in the North Pacific were 39 ± 2 μM and −532 ± 15‰, respectively (n = 59) (Druffel 
et al., 2018, 2019, 2021). Using −532‰ and +84‰ as the two end-members, the DOC in the deep East Sea 
would be 71% aged DOC and 29% newly-produced DOC [f × (−532 ± 15‰) + (1 − f) × (+84 ± 48‰) = (−35
5 ± 13‰), f = 0.71 ± 0.11]. The concentration of the young DOC in the deep layer, 16 ± 6 μM, is high (see below).

3.2. Intrusion of Refractory Dissolved Organic Carbon and Its Spread to the Deep Layer of the East Sea

We performed a serial-oxidation experiment on the water sample from 2,500 m depth at Station M9. The result 
showed a similar decreasing trend in the Δ 14C values from −299 ± 23‰ to −396 ± 31‰ with the increasing 
UV-irradiation time (Figure 3). The weighted mean Δ 14C value of these fractions was identical to the mean Δ 14C 
value of all bulk DOC samples in the deep layer (n = 11). In contrast to the open ocean data, the lowest Δ 14C 
value in the East Sea was observed at the subsurface at Station M4 (Figure 2b). The water mass at this depth 
has the characteristics of the Tsushima Warm Water (TWW, water mass originating from the Tsushima Warm 
Current), which has a salinity of ∼34.3, a temperature of >10°C (K. Kim et al., 2004), and a low dissolved oxygen 
concentration of ∼180 μM (Figure S2 in Supporting Information S1). Therefore, it is suspected that the DOC in 
the TWW represents the refractory DOC introduced to the East Sea from the Northwest Pacific. We performed 
a serial-oxidation experiment on another sample collected at 100 m depth at Station M9, where similar TWW 
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characteristics were observed (Figure S2 in Supporting Information S1). Unlike the sample from 2,500 m, the 
sample from 100 m at Station M9 showed a much smaller variation in Δ 14C value, within the uncertainty, with 
irradiation time (between −372 ± 18‰ and −346 ± 31‰; Figure 3). This result implies a homogeneous nature 
of the DOC at 100 m depth in terms of photochemical/biological reactivity, in contrast to that at 2,500 m depth 
and other samples from the open ocean (Figure 3) (Beaupré & Druffel, 2012).

Considering the serial-oxidation result and the high value of apparent oxygen utilization (AOU, ∼75 μmol kg −1; 
Figure S2 in Supporting Information S1), this DOC (hereafter TWW-DOC; 58 μM, Δ 14C = −364‰) could be 
a biologically refractory fraction that remained after selective degradation of labile and semi-labile fractions. 
Because the TWW-DOC does not deviate from the trend line on the Keeling plot, the TWW-DOC appears to 
be a mixture of the background DOC in the deep Northwest Pacific and DOC with modern Δ 14C values. The 
serial-oxidation results suggest that the modern DOC portion of the TWW-DOC is biologically refractory. Also, 
the refractory and aged DOC portion was transformed to become more reactive to UV-irradiation. The refractory 
DOC with modern Δ 14C values is assumed to have been produced in situ in the East Sea by microbial activity (Jiao 
et al., 2010; Ogawa et al., 2001) and photochemical reactions (Benner & Biddanda, 1998). Alternatively, these 
processes may have changed the properties of the aged portion. At this point, we do not understand any specific 
processes to cause the homogeneous nature of TWW-DOC, and necessitates further investigation. TWW-DOC 
would comprise the oldest fraction of the deep DOC (Δ 14C = −396 ± 31‰; Figure 3) in the East Sea. Subse-
quent aging (hundreds of years) during deep circulation could partly explain the age difference between the most 
refractory portions of DOC at 2,500 and 100 m. Selective degradation of younger DOC fraction in the deep layer 
can also increase the age difference.

The nature of deep DOC in the East Sea in terms of its bioavailability/refractory nature has been assessed by a few 
different approaches. In general, the DOC:DON molar ratio (hereafter C:N ratio) increases, and the Δ 14C value 
decreases as the molecular size of dissolved organic matter (DOM) decreases (Amon & Benner, 1994; Benner & 
Amon, 2015; Walker et al., 2016). The C:N ratios of the DOM in the East Sea were 17 ± 4 and 23 ± 3 in the surface 
and deep layers, respectively (T. H. Kim & Kim, 2013; T. H. Kim et al., 2017), which are higher than those of 
the labile DOM (C:N ratio of 10) (Jiao et al., 2010). However, the average contents of total dissolved amino acids 
relative to DOC content (TDAA yields) in the deep East Sea were 0.8 ± 0.2% of the DOC (T. H. Kim et al., 2017), 

Figure 3. Variation of Δ 14C values of the fractions retrieved by serial-oxidation by UV-irradiation. Each horizontal line 
indicates the fraction of dissolved organic carbon (DOC) extracted during each oxidation relative to the sum of each extracted 
fraction. The vertical lines represent the uncertainties. The DOC data in the Pacific Ocean are from Station M (34°50′N; 
123°00′W) as published by Beaupré and Druffel (2012) and Beaupré et al. (2007). The second fraction of the Station M9 
sample from 100 m depth of the East Sea (Japan Sea) was lost.
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which were similar to those (0.7 ± 0.1% DOC) at the BATS (Bermuda Atlantic Time-series Study) site and were 
higher than those (0.5 ± 0.1% DOC) at the HOT (Hawaii Ocean Time-series) site (Kaiser & Benner, 2009). 
Together with the results of serial-oxidation of the deep DOC, the high TDAA yields imply the existence of 
semi-labile DOC in the deep East Sea. Fast deep water turnover is at least partly responsible for the presence of 
labile and semi-labile DOC in the deep East Sea. Primary production in the East Sea (∼20 molC m −2 yr −1 annual 
average) is significantly higher than that in the open ocean (Joo et al., 2016). The export production (the flux of 
organic carbon from the euphotic zone to the sea interior) is also high (∼8 molC m −2 yr −1) (Hahm & Kim, 2008). 
Thus, POC dissolution (Smith et al., 1992) may be another important factor for high DOC concentration in the 
deep East Sea. The amount of humic fluorescent DOM (FDOM) in the layer >200 m in the East Sea was higher 
than that in the North Pacific, suggesting the accumulation of FDOM during the repeated renewal of deep water 
in the East Sea (Tanaka et al., 2014). In summary, the deep DOC in the East Sea appears to contain both refractory 
DOC transformed by the microbial carbon pump and the semi-labile DOC injected by rapid turnover (Aramaki 
et al., 2013) and POC dissolution.

4. Summary and Conclusions
We investigated DOC cycling in the East Sea by measuring its radiocarbon content. The Δ 14C values were consid-
erably higher than those in the open ocean. On the Keeling plot, the East Sea data formed a straight line, which 
aligned with that of the Pacific Ocean. These results imply that the background DOC in the East Sea originated 
from the Pacific, transported via the surface current. The lowest Δ 14C value of DOC was observed at subsurface 
depths, unlike the oceanic data where the lowest values are observed in the deep layer. This water mass has the 
characteristics of the TWW that originates from the Northwest Pacific. This result is consistent with what the 
Keeling plot implies, in terms of association with the Pacific in DOC cycling. In the serial-oxidation experiment, 
this TWW-DOC exhibited homogeneous reactivity to UV-irradiation. Therefore, modern DOC that was added to 
the refractory DOC pool had a refractory nature, and the refractory background DOC became more reactive to 
UV-irradiation. The aged DOC introduced from the Pacific is added by modern DOC and spreads into the deep 
layer along the deep water circulation in the East Sea. Our results in a marginal sea that investigated the linkage 
in DOC cycling to the Northwest Pacific may provide a clue to the removal of the aged DOC and the addition of 
modern DOC to the refractory DOC pool during surface water circulation in the oceans.

Data Availability Statement
Total and serially-oxidated DOC Δ 14C values and concentrations from the East Sea (Japan Sea) are available at 
Ryu et al. (2023). Total DOC Δ 14C values and concentrations in the Pacific, Atlantic, and Southern Ocean can be 
found in Druffel and Griffin (2015), Druffel et al. (2016, 2018, 2019, 2021). Serially-oxidated DOC Δ 14C values 
and concentrations from the Pacific are available through Beaupré and Druffel (2012) and Beaupré et al. (2007).
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